1b. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2018

Contents

1 Vertex Cover
 1.1 Simplification rules ... 2
 1.2 Preprocessing algorithm ... 3

2 Kernelization algorithms ... 3

3 A smaller kernel for Vertex Cover ... 4

4 More on Crown Decompositions .. 6

5 Kernels and Fixed-parameter tractability ... 6

6 Further Reading ... 7

1 Vertex Cover

A vertex cover of a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that for each edge $\{u, v\} \in E$, we have $u \in S$ or $v \in S$.

Exercise 1

![Graph Image]
Is this a Yes-instance for Vertex Cover? (Is there $S \subseteq V$ with $|S| \leq 4$, such that $\forall uv \in E, u \in S$ or $v \in S$?)

Exercise 2

1.1 Simplification rules

(Degree-0)
If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both Yes-instances or they are both No-instances.

Lemma 1. (Degree-0) is sound.

Proof. First, suppose $(G - v, k)$ is a Yes-instance. Let S be a vertex cover for $G - v$ of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a Yes-instance.

Now, suppose $(G - v, k)$ is a No-instance. For the sake of contradiction, assume (G, k) is a Yes-instance. Let S be a vertex cover for G of size at most k. But then, $S \setminus \{v\}$ is a vertex cover of G of size at most k, a contradiction.

(Degree-1)
If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u, v\}$ is a vertex cover of $G - N_G[v]$ of size at most $k - 1$, because $u \in S$ or $v \in S$. If S' is a vertex cover of $G - N_G[v]$ of size at most $k - 1$, then $S' \cup \{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G - N_G[v]$ are incident to v.

(Large Degree)
If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \leq k$.

(Number of Edges)
If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No
Lemma 4. (Number of Edges) is sound.

Proof. Assume \(d_G(v) \leq k \) for each \(v \in V \) and \(|E| > k^2 \). Suppose \(S \subseteq V \), \(|S| \leq k \), is a vertex cover of \(G \). We have that \(S \) covers at most \(k^2 \) edges. However, \(|E| \geq k^2 + 1 \). Thus, \(S \) is not a vertex cover of \(G \). \(\square \)

1.2 Preprocessing algorithm

\textbf{VC-preprocess}

\textbf{Input}: A graph \(G \) and an integer \(k \).

\textbf{Output}: A graph \(G' \) and an integer \(k' \) such that \(G \) has a vertex cover of size at most \(k \) if and only if \(G' \) has a vertex cover of size at most \(k' \).

\[G' \leftarrow G \]
\[k' \leftarrow k \]
\[\text{repeat} \]
\[\text{execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for } (G', k') \]
\[\text{until no simplification rule applies} \]
\[\text{return } (G', k') \]

Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

- Say that a preprocessing algorithm for a problem \(\Pi \) is \textit{nice} if it runs in polynomial time and for each instance for \(\Pi \), it returns an instance for \(\Pi \) that is strictly smaller.
- \(\rightarrow \) executing it a linear number of times reduces the instance to a single bit
- \(\rightarrow \) such an algorithm would solve \(\Pi \) in polynomial time
- For NP-hard problems this is not possible unless \(P = \text{NP} \)
- We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the \textit{parameter}
- How large is the resulting instance in terms of the parameter?

Effectiveness of \textbf{VC-preprocess}

Lemma 5. \textit{For any instance } \((G, k)\text{ for Vertex Cover, VC-preprocess produces an equivalent instance } (G', k')\text{ of size } O(k^2)\).

Proof. Since all simplification rules are sound, \((G = (V, E), k)\) and \((G' = (V', E'), k')\) are equivalent. By (Number of Edges), \(|E'| \leq (k')^2 \leq k^2 \). By (Degree-0) and (Degree-1), each vertex in \(V' \) has degree at least 2 in \(G' \). Since \(\sum_{v \in V'} d_{G'}(v) = 2 |E'| \leq 2k^2 \), this implies that \(|V'| \leq k^2 \). Thus, \(|V'| + |E'| \leq O(k^2) \). \(\square \)

2 Kernelization algorithms

Kernelization: definition

Definition 6. A \textit{kernelization} for a parameterized problem \(\Pi \) is a \textbf{polynomial time} algorithm, which, for any instance \(I \) of \(\Pi \) with parameter \(k \), produces an \textit{equivalent} instance \(I' \) of \(\Pi \) with parameter \(k' \) such that \(|I'| \leq f(k) \) and \(k' \leq f(k) \) for a computable function \(f \). We refer to the function \(f \) as the \textit{size} of the kernel.

Note: We do not formally require that \(k' \leq k \), but this will be the case for many kernelizations.
VC-preprocess is a quadratic kernelization

Theorem 7. *VC-preprocess* is an $O(k^2)$ kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?

3 A smaller kernel for Vertex Cover

Integer Linear Program for Vertex Cover

The Vertex Cover problem can be written as an Integer Linear Program (ILP). For an instance $(G = (V, E), k)$ for Vertex Cover with $V = \{v_1, \ldots, v_n\}$, create a variable x_i for each vertex v_i, $1 \leq i \leq n$. Let $X = \{x_1, \ldots, x_n\}$.

ILP $\text{VC}(G) = $

\[
\begin{align*}
\text{Minimize} & \sum_{i=1}^{n} x_i \\
\text{subject to} & \quad x_i + x_j \geq 1 \quad \text{for each } \{v_i, v_j\} \in E \\
& \quad x_i \in \{0, 1\} \quad \text{for each } i \in \{1, \ldots, n\}
\end{align*}
\]

Then, (G, k) is a Yes-instance iff the objective value of ILP$_{\text{VC}}(G)$ is at most k.

LP relaxation for Vertex Cover

LP $\text{VC}(G) = $

\[
\begin{align*}
\text{Minimize} & \sum_{i=1}^{n} x_i \\
\text{subject to} & \quad x_i + x_j \geq 1 \quad \text{for each } \{v_i, v_j\} \in E \\
& \quad x_i \geq 0 \quad \text{for each } i \in \{1, \ldots, n\}
\end{align*}
\]

Note: the value of an optimal solution for the Linear Program LP$_{\text{VC}}(G)$ is at most the value of an optimal solution for ILP$_{\text{VC}}(G)$

Properties of LP optimal solution

- Let $\alpha : X \rightarrow \mathbb{R}_{\geq 0}$ be an optimal solution for LP$_{\text{VC}}(G)$. Let

\[
\begin{align*}
V_- &= \{v_i : \alpha(x_i) < 1/2\} \\
V_{1/2} &= \{v_i : \alpha(x_i) = 1/2\} \\
V_+ &= \{v_i : \alpha(x_i) > 1/2\}
\end{align*}
\]

Lemma 8. For each $i, 1 \leq i \leq n$, we have that $\alpha(x_i) \leq 1$.

Lemma 9. V_- is an independent set.

Lemma 10. $N_G(V_-) = V_+$.

Lemma 11. For each $S \subseteq V_+$ we have that $|S| \leq |N_G(S) \cap V_-|$.

Proof. For the sake of contradiction, suppose there is a set $S \subseteq V_+$ such that $|S| > |N_G(S) \cap V_-|$. Let $\epsilon = \min_{v_i \in S} \{\alpha(x_i) - 1/2\}$ and $\alpha' : X \rightarrow \mathbb{R}_{\geq 0}$ s.t.

\[
\alpha'(x_i) = \begin{cases}
\alpha(x_i) & \text{if } v_i \notin S \cup (N_G(S) \cap V_-) \\
\alpha(x_i) - \epsilon & \text{if } v_i \in S \\
\alpha(x_i) + \epsilon & \text{if } v_i \in N_G(S) \cap V_-
\end{cases}
\]

Note that α' is an improved solution for LP$_{\text{VC}}(G)$, contradicting that α is optimal. \qed
Theorem 12 (Hall’s marriage theorem). A bipartite graph $G = (V \uplus U, E)$ has a matching saturating $S \subseteq V$ if and only if for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$.

Consider the bipartite graph $B = (V_-, V_+, \{\{u, v\} \in E : u \in V_-, v \in V_+\})$.

Lemma 13. There exists a matching M in B of size $|V_+|$.

Proof. The lemma follows from the previous lemma and Hall’s marriage theorem.

Crown Decomposition: Definition

Definition 14 (Crown Decomposition). A crown decomposition (C, H, B) of a graph $G = (V, E)$ is a partition of V into sets $C, H, \text{ and } B$ such that

- the crown C is a non-empty independent set,
- the head $H = N_G(C)$,
- the body $B = V \setminus (C \cup H)$, and
- there is a matching of size $|H|$ in $G[H \cup C]$.

By the previous lemmas, we obtain a crown decomposition $(V_-, V_+, V_{1/2})$ of G if $V_- \neq \emptyset$.

Crown Decomposition: Examples

\[
\begin{array}{c}
\text{crown decomposition} \\
(\{a, e, g\}, \{b, d, f\}, \{c\})
\end{array}
\hspace{1cm}
\begin{array}{c}
\text{has no crown decomposition}
\end{array}
\]

Using the crown decomposition

Lemma 15. Suppose that $G = (V, E)$ has a crown decomposition (C, H, B). Then,

$$vc(G) \leq k \iff vc(G[B]) \leq k - |H|,$$

where $vc(G)$ denotes the size of the smallest vertex cover of G.

Proof. (\Rightarrow): Let S be a vertex cover of G with $|S| \leq k$. Since S contains at least one vertex for each edge of a matching, $|S \cap (C \cup H)| \geq |H|$. Therefore, $S \cap B$ is a vertex cover for $G[B]$ of size at most $k - |H|$.

(\Leftarrow): Let S be a vertex cover of $G[B]$ with $|S| \leq k - |H|$. Then, $S \cup H$ is a vertex cover of G of size at most k, since each edge that is in G but not in G' is incident to a vertex in H.

Nemhauser-Trotter

Corollary 16 ([Nemhauser, Trotter, 1974]). There exists a smallest vertex cover S of G such that $S \cap V_- = \emptyset$ and $V_+ \subseteq S$.

\footnote{A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M.}
Crown reduction

(Crown Reduction)
If solving LP$_{VC}(G)$ gives an optimal solution with $V_\neg \neq \emptyset$, then return $(G - (V_\neg \cup V_\neg), k - |V_\neg|)$.

(Number of Vertices)
If solving LP$_{VC}(G)$ gives an optimal solution with $V_\neg = \emptyset$ and $|V| > 2k$, then return No.

Lemma 17. (Crown Reduction) and (Number of Vertices) are sound.

Proof. (Crown Reduction) is sound by previous Lemmas. Let α be an optimal solution for LP$_{VC}(G)$ and suppose $V_\neg = \emptyset$. The value of this solution is at least $|V|/2$. Thus, the value of an optimal solution for ILP$_{VC}(G)$ is at least $|V|/2$. Since G has no vertex cover of size less than $|V|/2$, we have a No-instance if $k < |V|/2$. \qed

Linear vertex-kernel for Vertex Cover

Theorem 18. VERTEX COVER has a kernel with $2k$ vertices and $O(k^2)$ edges.

This is the smallest known kernel for VERTEX COVER. See http://fpt.wikidot.com/fpt-races for the current smallest kernels for various problems.

4 More on Crown Decompositions

Crown Lemma

Lemma 19 (Crown Lemma). Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

To prove the lemma, we need König’s Theorem

Theorem 20 ([König, 1916]). In every bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover.

Proof of the Crown Lemma. Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done. Note that $I := V \setminus V(M)$ is an independent set with $|V| - |V(M)| \geq k + 1$ vertices. Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I. Compute a minimum vertex cover X and a maximum matching M' of B. We know: $|X| = |M'| \leq |M| \leq k$. Hence, $X \cap V(M) \neq \emptyset$. Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}$. We obtain a crown decomposition with

- crown $C = V(M^*) \cap I$
- head $H = X \cap V(M) = X \cap V(M^*)$, and
- body $B = V \setminus (C \cup H)$.

As an exercise, verify that (C, H, B) is indeed a crown decomposition. \qed

5 Kernels and Fixed-parameter tractability

Theorem 21. Let Π be a decidable parameterized problem. Π has a kernelization algorithm $\iff \Pi$ is FPT.

Proof. (\Rightarrow): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

(\$\Leftarrow\$): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$. If $f(k) < n$, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial Yes- or No-instance depending on the answer of A. Otherwise, $f(k) \geq n$. In this case, the kernelization algorithm outputs the input instance. \qed
After computing a kernel ...

- ... we can use any algorithm to compute an actual solution.
- Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algorithms

Kernels

- A parameterized problem may not have a kernelization algorithm
 - Example, COLORING\(\) parameterized by \(k\) has no kernelization algorithm unless \(P = NP\).
 - A kernelization would lead to a polynomial time algorithm for the NP-complete 3-COLORING problem
- Kernelization algorithms lead to FPT algorithms ...
- ... FPT algorithms lead to kernels

6 Further Reading

\(^2\)Can one color the vertices of an input graph \(G\) with \(k\) colors such that no two adjacent vertices receive the same color?