Welcome!
COMP1511 18s1

Programming Fundamentals

COMP1511 18s1
— Lecture 7 —
Strings

Andrew Bennett

<andrew.bennett@unsw.edu.au>

chars
arrays of chars
strings

Before we begin...

introduce yourself to the person sitting next to you

why did they decide to study computing?

after this lecture, you should be able to...

understand the basics of chars
understand what ASCII is
understand the basics of strings

write programs using strings to solve simple problems

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remembe

programming is like learning any other language, it takes consistent and regular practice.)

Don't panic!

course style guide published

week 4 weekly test due friday

don’t be scared!

assignment 1 out now

work on it regularly!
additional autotests added to the assignment

don't forget about help sessions!

see course website for details

Beyond Numbers

we've mostly seen numbers thus far
int age = 18;
double pi1 = 3.14

what else might we want to store?

6
Letters and Words

what about words?

printf("andrew is awesome");]

7/
Letters and Words

what about words?

printf("andrew is awesome");]

“andrew is awesome”

Letters and Words

words in C are called strings

printf("andrew 1s awesome");

“andrew is awesome”

A this is a string

introducing: strings

a string is an array of characters.

note: a character is a “printed or written letter or symbol”.

a character generally refers to a
letter, number, punctuation, etc.

inCwecallita char

Characters in C

inCwecallita char

// making an 1int
int age = 18;

// making a char

char letter = "A';

char s go inside single quotes,i.e. ' .
strings go inside double quotes,i.e. " .

Characters in C

char stores small integers.

8 bits (almost always).
mostly used to store ASCII character codes

don't use for individual variables, only arrays
only use char for characters

(not to store e.g. numbers between 0-9)

ASCIl is a way of mapping humbers to characters.

it contains:
upper and lower case English letters: A-Z and a-z
digits: 0-9
common punctuation symbols

special non-printing characters: e.g newline and space.

you don't have to memorize ASCII codes!

single quotes give you the ASCII code for a character:

printf("%d", 'a'); // prints 97
printf("%d", 'A'); // prints 65
printf("%d", '0'); // prints 48
printf("%d", ' ' + '\n'); // prints 42 (32 + 10)

don't put ASCII codes in your program - use single quotes instead!

let’s try it out!

Reading chars

getchar()

reads a byte from standard input
returns an int

returns a special value if it can’t read a byte
otherwise returns an integer (0..255)
(ASCII code)

let’s try it out!

consider the following code:

int cl, cZ;

printf("Please enter first character:\n");
cl = getchar();

printf("Please enter second character:\n");
c2 = getchar();

printf("First %d\nSecond: %d\n", cl, c2);

what should this do?
what does it actually do?

(how can we fix it?)

int cl, cZ;

printf("Please enter first character:\n");
cl = getchar(Q);

printf("Please enter second character:\n");
c2 = getchar();

printf("First %d\nSecond: %d\n", cl, c2);

what should this do? read two typed characters

what does it actually do? read one typed character + enter

how can we fix it?

int cl, cZ;
printf("Please enter first character:\n");
cl = getchar();

getchar(); // extra getchar to catch the newline
printf("Please enter second character:\n");

c2 = getchar();
printf("First %d\nSecond: %d\n", cl, c2);

scanf or getchar will fail if there isn't any more input

eg if you're reading from a file and reach the end of the file
getchar returns a special value to indicate no more input is available
we call this value EOF

(how could you check this with scanf?)

Reading until End of Input

int c;

c = getchar(Q);

while (c !'= EOF) {
printf("’%c’ read, ASCII code 1is %d\n", c, c);
c = getchar();

reading numbers until end of input with scanf:

int num;

while (scanf("%d", &num) == 1) {
printf("you entered the number: %d\n", num);

}

strings are an array of characters

Remember Arrays?

A series of boxes with a common type,
all next to each other

[| | T Il | T T Il | T | I

Il I I 1 Il I 1] Il I I | L.

// Declare an array with 10 elements
// and 1initialises all elements to 0.
int myArray[10] = {0};

I I I | I
| o] o] o] o] 0|
I | I I |

| | |
2| 0| o0| o
| | |

0

le 1 12 |3 14 |5 o6 |7

| 8

9

int myArray[10] = {0};

myArray[0] = 3;
myArray[5] = 17;

I I I | I I I | I |
| 31 @] o] o o[17] o 0| | 0|
I | I I | | I I | |

le 1 12 |3 14 |5 le |7 |8 |9

Character Arrays

we can make an array of chars in the same way

char myArray[10] = {0%};

myArray[0] = 65;

myArray[5] = 70;

]e5	0	0	0	@o	70	0	©0	0	0
l o	1	13 14	5 e	7	8	9			

you don't always know the length of a string in advance

e.g. name could be “Andrew”, or “Tom”

(6 characters vs 3 characters)

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]

name[0]
name[1]
name[Z2]

How long is a piece of string?

we need a way to know how long the string is!

name[0] = 'A'; name[1] = 'n'; name[2] = 'd';
name[3] = 'r'; name[4] = 'e'; name[5] = 'w';
| | | | | | | I | | |
| A N|[D|RJE]|W[] | | | |
l | | I | | | | I] |
o1 11213141516l 71819

(please never write code on one line like this! it's only here so the slides fit)

How long is a piece of string?

we need a way to know how long the string is!

name[@0] = 'T'; name[1] = '0'; name[2] = 'm';

I | I I I | I I I I I
ot Mt R E W
l I | | I I I | | I I

ol 11213141516l 718129

printing name would print TOMREW

Null Terminator

we do this in C using a null terminator

any function (e.g. printf) working with a string
interprets this as “end of string”.

namel[0] = 'T';
name[l] = 'o';
name[Z2] = 'm’;
name[3] = '\0';

Null Terminator

I I I I I I I
Tt Mt ™Ne | E [W]
l I I | | I I

o1 1121

3141516l 718129

printing name would now print TOM

Sidenote: Uninitialised Arrays

what happens if we don't initialise our array?

let’s try it and see!

Sidenote: Uninitialised Arrays

what’'s wrong with this code?

int array[SIZE];

int 1 = 0;

while (1 < SIZE) {
printf("%d\n", array[1]);
1++;

Sidenote: Uninitialised Arrays

the array has not been initialised

int array[SIZE];

int 1 = 0;

while (1 < SIZE) {
printf("%d\n", array[1]);
1++;

Sidenote: Uninitialised Arrays

solution: initialise the array first

(note: you could also initialise all the values in a loop)

int array[SIZE] = {0};

int 1 = 0;

while (1 < SIZE) {
printf("%d\n", array[1]);
1++;

Sidenote: Uninitialised Arrays

dcc can catch this for you if you tell it to use valgrind

dcc -o blah blah.c --valgrind

