COMP1511 - Programming
Fundamentals

— Term 3, 2019 - Lecture 12 S

What did we cover yesterday?

Arguments in our main function

e How toread command line arguments
Professionalism

e Important skills for working with people
Pointers

e Memory addresses stored in variables
e These give us access to the memory where a variable is stored

What are we covering today?

Structs

e C has another way of collecting variables
e This time, it's able to store variables of different types

Pointers and Structs

e Pointers to structs
e A code example using pointers and structs

Recap - Pointers and Memory

What is a pointer?

e |[t's avariable that stores the address of another variable of a specific type
e We call them pointers because knowing something's address allows you
to “point” at it

Why pointers?

e They allow us to pass around the address of a variable instead of the
variable itself

Using Pointers

Pointers are like street addresses...

e We can create a pointer by declaring it with a * (like writing down a street
address)

e If we have a variable (like a house) and we want to know its address, we
use &

int 1 = 100;

// create a pointer called ip that points at
// the location of i

int *ip = &i;

Using Pointers

If we want to look at the variable that a pointer “points at”

e We use the * on a pointer to access the variable it points at
e Using the address analogy, this is like navigating to the house at that
address and looking inside the house

int i = 100;

// create a pointer called ip that points at

// the location of i

int *ip = &i;

printf ("The value of the wvariable at %p is %d", ip, *ip);

Pointers in Functions

We'll often use pointers as input to functions

e Pointers give a function access to a variable that's in memory
e They also allow us to affect multiple variables instead of only having one
output

void swap_nums (int *numl, int *num2) {
int temp = *numl;
*numl *num?2 ;
*num?2 temp;

Pointers and Arrays

These are very similar

e Arrays are actually memory addresses along with a certain amount of
memory set aside for their use

e Pointers are also memory addresses

e This gives both pointers and arrays access to memory

Structs

A new way of collecting variables together

Structs (short for structures) are a way to create custom variables
Structs are variables that are made up of other variables

They are not limited to a single type like arrays
They are also able to name their variables

Structs are like the bento box of variable collections

Before we can use a struct...

Structs are like creating our own variable type

e We need to declare this type before any of the functions that use it
e We declare what a struct is called and what the fields (variables) are

struct bender {
char name[MAX LENGTH] ;
char element[MAX LENGTH];
int power;
int health;

Creating a struct variable and accessing its fields

Declaring and populating a struct variable

e Declaring a struct: "struct structname variablename;"
e Use the. to access any of the fields inside the struct by name

int main(void) {
struct bender aang;
strcpy (aang.name, "RAang");
strcpy (aang.element, "Air");
aang.power = 10;
aang.health = 5;

printf("%s's element is: %s.\n", aang.name, aang.element);

Accessing Structs through pointers

Pointers and structs go together so often that they have a shorthand!

struct bender *avatar = &aang;

// knowledge of pointers suggests using this
*avatar.power = 10;

// but there's another symbol that automatically
// dereferences the pointer and accesses a field
// inside the struct

avatar->power = 10;

Structs as Variables

Structs can be treated as variables

e Yes, this means arrays of structs are possible

e |t also means structs can be some of the variables inside other structs

e |n general, it means that once you've defined what a struct is, you use it
like any other variable

Break Time

Breaking into new territory

The first half of the course may be familiar to anyone who's looked at
programming before

It also had concepts that, while important, are not very complex

The second half of the course will leverage what you've learnt

And will add both complexity and some concepts that take a little bit more
abstract thinking

Let's write some code

Element Benders are having a fight in a forest!

A team of four benders against one very powerful enemy

We'll create a struct that represents a bender

We'll have four of them in a team

And one who will fight them all

We'll create some functions that pit the benders against each other
We'll loop a series of attacks until either side has lost

Create Structs for Characters

Create a struct to allow us to represent the characters

We'll borrow the one we created earlier

struct bender {
char name[MAX LENGTH] ;
char element[MAX LENGTH];
int power;
int health;

Create the actual struct variables

The struct is defined, now we create the actual variables

e Theteam can bein an array

int main (void) {
struct bender companions[TEAM SIZE];
strcpy (companions[0] .name, "Avatar Aang");
strcpy (companions[0] .element, "Air");
companions[0] .power = 10;
companions[0] .health = 5;
strcpy (companions[1l] .name, "Katara");
strcpy (companions|[1l] .element, "Water'");
companions[l] .power = 7;
companions[1l] .health = 7;
// etc

The struct is a variable type

Each instance of the struct can have a different name and stats

e Which means we can use the same struct for different characters!
e |t also means that any of our characters are now interchangeable

struct bender zuko;

strcpy (zuko.name, "Prince Zuko") ;
strcpy (zuko.element, "Fire");
zuko.power = 20;

zuko.health = 20;

Let's use a function for a single attack

We pass pointers to structs in the function

This allows the function to make changes to our characters

void attack(struct bender *attacker, struct bender *target) {
printf ("%s attacks %s for %d damage.\n",
attacker->name, target->name, attacker->power
) ;
target->health -= attacker->power;
if (target->health <= 0) {
// target has run out of health
printf ("%s is knocked out.\n", target->name) ;

Passing addresses into functions

e We're passing addresses of structs to the attack function

e We do this by declaring that the function takes pointers as input (*)

e And when we call the function, we provide the addresses (&) of the
variables

e This allows the function to know where it can access our data (including
the ability to change it)

Calling the attack function

If we just want a duel between one bender and Zuko

int teamCount = 0;
attack (&zuko, &companions|[teamCount]) ;
attack (&companions[teamCount], &zuko);

But if we want to be able to use pointers to each of them

int teamCount = 0;

struct bender *companion = &companions|[teamCount];
struct bender *prince = &zuko;

attack (prince, companion) ;

attack (companion, prince);

Let's fight until one side loses

Let's loop and keep attacking until either side is knocked out

e We'll need a function that tells us whether either side has run out of
health

e Then we'll need a loop that keeps the fight going, letting the companions
step in for each other if one is knocked out

stillAlive()

int stillAlive (struct bender *solo, struct bender team[TEAM SIZE]) ({
int sAlive = 1;
int tAlive = 0;
if (solo->health <= 0) {
sAlive = 0;
}
int 1 = 0;
while (i < TEAM SIZE) {
if (team[i] .health > 0) {
tAlive = 1;
}
i++;
}

return sAlive * tAlive;

The main loop

int teamCount = 0;
struct bender *companion = &companions|[teamCount];
declareElement (companion) ;
struct bender *prince = &zuko;
while (stillAlive (prince, companions)) {
if (companion->health <= 0) ({
// this companion is knocked out, move on
benderCount++;
companion = &companions|[teamCount];
declareElement (companion) ;
} else {
attack (prince, companion) ;
attack (companion, prince)

The declareElement function

A void function doesn't give any information back to the rest of the program
but it still might have some useful side effects

// A simple function to declare a bender's name and their element
void declareElement (struct bender *fighter) {
printf (
"$s wields the element: %s\n",
fighter->name,
fighter->element

)

We might want a bit more variation

Introducing rand() - Arandom number generator from C's Standard
Library

e C(alling rand () will return an int from a generated sequence
The sequence appears random
e Butif we run the program again, it will generate the same sequence!

e srand() allows us to give a seed to our random number generator
e We can use "seed" values to select different sequences to use
e If we try to run different seeds every time, we'll get different sequences

Seed the rand() with command line input

e We can take input from the command line that ran the program and use
that as our seed value
e This lets us change the sequence each time

int main (int argc, char *argv[]) {
if (argc > 1) {
// if we received a command line argument,
// use that as our random seed
srand(strtol (argv([1l], NULL, 10));

Let's add some randomness to the attack

Using rand and % we can get an int that's between 0 and a number

e Now the damage is inconsistent, we won't always know the result

void attack (struct bender *attacker, struct bender *target) {
int damage = rand() % attacker->power;
printf ("%$s attacks %s for %d damage.\n",
attacker->name, target->name, damage
)
target->health -= damage;
if (target->health <= 0) {
// target has run out of health
printf ("%s is knocked out.\n", target->name) ;

So we have a complete element bender battle!

We're looping through the fight and we don't always know the outcome!

e We've declared our first struct
e We also used it just like a variable in an array
e We passed pointers to our structs into functions

What's next?

e (Can you write better style than this?
e There are a few places where separating things into functions would be
very effective at increasing readability!

What did we learn today

Structs

e We've used structs as elements of an array
e We've used structs as members of another struct

e We're now seeing more complex code using strings, libraries, functions,
pointers and structs

