COMP9024: Data Structures and

!'_ Algorithms

Randomized Algorithms




Contents
—_—

= Randomized Algorithm
= Quick Selection
= Skip Lists




Randomized Algorithm (1/2)

= A randomized algorithm is an algorithm that employs
a degree of randomness as part of its logic.

= The algorithm typically uses uniformly random bits as an
auxiliary input to guide its behaviour, in the hope of
achieving good performance in the average case over all
possible choices of random bits.
= The performance of a randomized algorithm is a
random variable determined by the random bits.
= The worst-case performance is typically bad with a very
small probability but the average performance can be good.
= Two categories: Las Vegas algorithm and Monte
Carlo algorithm



andomized Algorithm (2/2)
—————————

= Las Vegas algorithm

= A Las Vegas algorithm is a randomized algorithm that
always gives correct results

= Monte Carlo algorithm

= A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a certain (typically small)
probability




An Example (1/5)
————— =

= Given an unsorted list where half of the elements have
a key k1 and the other half have a key k2, find an
element in the list with key k1.




An Example (2/5)
——————

= Las Vegas algorithm

Algorithm findKey(L, k1)
Input: list L, key k1
Output: an element in L with key k1
{

repeat

randomly select e€L;
until key(e)=k1;
return e;

}



An Example (3/5)
———

Analysis:

= Probability of success: 1

= The number of iterations varies and can be
arbitrarily large, but the expected number
of iterations is:

. noi_
lim >—g— =

n—>00

= The expected time complexity is O(1)



An Example (4/5)
————— =

= Monte Carlo algorithm

Algorithm findKey(L, k1)
Input: list L, key k1
Output: an element in L with key k1

{
1=0;
repeat
randomly select e€L;
I++;
until key(e)=k1 or i=m;
return e;

}



An Example (5/5)
———

Analysis:
= After k iterations, the probability of finding an

. _ Nk
element with key k1l is 1 — (E)

= Time complexity is O(1) but its does not
guarantee success



uick Selection




The Selection Problem s@@
=t

= Given an integer k and n elements x5, X,, ..., X,
taken from a total order, find the k-th smallest
element in this set.

= Of course, we can sort the set in O(n log n) time
and then index the k-th element.

= Can we solve the selection problem faster?

11



Quick-Select (1/2)

= Quick-select is a randomized
selection algorithm based on I I
the prune-and-search I [] ]

paradigm:

= Prune: pick a random element x
(called pivot) and partition S into I I
= L elements less than x I
N .) \ ) \ y;
Y Y Y
L E G

« E elements equal x \
= G elements greater than x
= Search: depending on k, either g <[ ‘ k> |L|+|E]
answer is in E, or we need to kK’=k-|L|-|E]|
recurse in either L or G
IL| <k <|L|+|E]|
(done) 12



uick-Select (2/2)
—_—

Algorithm quickSelect(S, k)
Input Sequence S of |S| comparable elements and an integer &k in [1, [ S]]
Output The k-th smallest element of S
{1f |S]=1
return the (first) element of S;
pick a random integer i in [1, |S|]; // |S] 1s the size of S;
(L, E, G)=partition(S, i);
if k<l
quickSelect(L, k);
else if k <=|L|+|E|
return S[1]; // Each element in E is equal to Si]
else // Find the k-|L|-|E|-th element in G
quickSelect( G, k-|L|-|E));

13



Partition

JEHO R AL RN

We partition an input
sequence as in the quick-sort
algorithm:

= We remove, in turn, each
element y from § and

= Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the

end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-select takes O(n) time

(S

U

Algorithm partition(S, i)
nput sequence S, 1ndex ; Of the'pivo

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

{ L, E, G = empty sequences;
x=S[i];
while ( —S.isEmpty() )
{ y=_S8.remove(S.first());
if (y<x)
L.insertLast(y);
elseif (y=x)
E.insertLast(y);
else//y>x
G.insertLast(y); }
return L, E, G;

}

13




Quick-Select Visualization

= An execution of quick-select can be visualizej Ey a

recursion path

= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

——
——

15



Worst-Case Time complexity (1/3)

= What is the worst-case?

» Each time the smallest key or the largest key is
selected, and thus only one element (the one with the
smallest key or the one with the largest key) is
excluded on each iteration

= The worst-case time complexity is
O(n)+0(n-1)+...+40(2)+0(1)
=0((n(n+1)/2))=0(n?)

16



Worst-Case Time complexity (2/3)

= What is the probability of the worst-case?

= Let & be the event that we pick the largest or
smallest element when there are k elements left.

= Let event € be the worst-case. We have:
= Hl 1 51
s What is P(€)=P(I[;=7 &)?
= Since all &'s are mdependent, this simplifies to

P(E)=P(IT;ZT &)=TT;Z% P (&)

17



Worst-Case Time complexity (3/3)
—_—

u P(El ) — 1

= If i>1, then P(€)==. Thus

P(E)=TTi27 P(e)=T1iT3 = = =
= if n = 31, then 21<101% and n! = 8 x 1033
P(€)<1/1022, This is extremely unlikely!

2n—1

18



Expected Running Time

= Consider a recursive call of quick-select on a sequence Fs

= Good call: the sizes of L and G are each less than 3s/4
=« Bad call: one of L and G has size greater than or equal to 3s/4

&~ ~
‘- ; 1

Good call Bad call

&~ ~a

= A call is good with probability 1/2
=« 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \. ~ S\

Bad pivots Good pivots Bad pivots

19



Expected Running Time

(2/2)

Probabilistic Fact #eisslae-@)peciet=titbeinoi=coi=iosses=Feauiiea=i

order to get one head is two
Probabilistic Fact #2: Expectation is a linear function:
= EX+Y)=EX)+EY)
» E(cX)=cEX)
Let T(n) denote the expected running time of quick-select.
By Fact #2,
s T(n) <T(3n/4) + bn*(expected # of calls for a good call)
By Fact #1,
= T(n) < T(3n/4) + 2bn
That is, T(n) is a geometric series:
s T(n) <2bn + 2b(3/4)n + 2b(3/4)*n + 2b(3/4)’n + ...
So T(n) is O(n).
We can solve the selection problem in O(n) expected
time. 20



!’_ Skip Lists
S; E=l

; {+o0]
s, =] I5 {-+-o0]
S, el 15 23] {+-o0]
S, o101 15 23360




What is a Skip List
= A skip list for a set S of distinct (key, element) items iM

lists S, S,, ..., S, such that
= Each list S; contains the special keys +w and —w
= List §, contains the keys of S in nondecreasing order

= Each list is a subsequence of the previous one, i.e.,
$,282...08,

« List S, contains only the two special keys
= We show how to use a skip list to implement the dictionary ADT

=
S, B2
S, B 5]

S, {2 —{251+{2]

22



We search for a key x in @ a SKIp ISt as TONOWS: _

« We start at the first position of the top list
= At the current position p, we compare x with y < key(next(p))
x =y. we return element(next(p))
x > y: we “‘scan forward”
x <y: we “drop down”
« If we try to drop down past the bottom list, we return null
= Example: search for 78

A ? (=]
; \I”Er -
S, =2 =] =

K s R Ry B 7y Ry 7 vy M 7

23



Insertion

algorithm:

= Example: insert key 15, with i =2

We repeatedly toss a coin until we get a tail, and we denote with i
the number of times the coin came up with heads

If i> h, we add to the skip list new lists §,,,, ..., S;,;, €ach
containing only the two special keys

We search for x in the skip list and find the positions p,, p,, ..., p;
of the items with largest key less than x in each list §,, S|, ..., S;

Forj <0, ..., i, we insert item (x, o) into list §; after position p;

To insert an entry (o itO a SKIp 1St We use a randomized

83 1= 400
1)
S, =i [ S, =0 15 o0
v D1
s, E<l 23] = — s[E 5 23 o0
e
S, == 36 —+ S, l=0ol—1 10— 15 {23 {36 {+o0

24




Deletion
= [0 remove an entry with key x from a skip list, we pro*

follows:

= We search for x in the skip list and find the positions p,, p,, ..., p;

of the items with key x, where position p; is in list S;
= We remove positions p,, p,, ..., p; from the lists §,, S, ..., S;

= We remove all but one list containing only the two special keys
= Example: remove key 34

S, =
ok
S, 134] [+o0] S, [ool [+o0]

4 pl

s\ B—E-Gi—E —)> s E—s] o0
, Do
S, 34 S, Ese{2{231{451—{¥

25




Implementation
—

= We can implement a skip list
with quad-nodes
= A quad-node stores:
= entry
= link to the node prev
= link to the node next
= link to the node below
= link to the node above
= Also, we define special keys
PLUS_INF and MINUS_INF,

and we modify the key
comparator to handle them

quad-node

26



Space Usage

= The space used by a skip list
depends on the random bits

used by each invocation of the
insertion algorithm

= We use the following two basic

probabilistic facts:

Fact 1: The probability of getting i

consecutive heads when
flipping a coin is 1/2¢

Fact 2: If each of n entries is
present in a set with

probability p, the expected size

of the set is np

Consider a skip list with »
entries

= By Fact 1, we insert an entry
in list §; with probability 1/2¢

« By Fact 2, the expected size
of list S, is n/2

The expected number of
nodes used by the skip list is

Thus, the expected space
usage of a skip list with n

items is O(n)
27



Height

= The running time of the
search and insertion
algorithms is affected by the
height & of the skip list

= We show that with high
probability, a skip list with n
items has height O(log n)

= We use the following
additional probabilistic fact:
Fact 3: If each of n events has
probability p, the probability

that at least one event
occurs is at most np

Consider a skip list with »
entries
= By Fact 1, we insert an entry
in list §; with probability 1/2¢

=« By Fact 3, the probability that
list S; has at least one item is
at most n/2'

By picking i = 3log n, we have
that the probability that S,
has at least one entry is
at most
n/23¢n = p/p3 = 1/n?

Thus a skip list with n entries
has height at most 3log n with
probability at least 1 — 1/n?

28

log n



Search and Update Times

The search time in a sE|p fist = When wWe scan rorward in a

is proportional to
=« the number of drop-down
steps, plus
« the number of scan-forward
steps
The drop-down steps are
bounded by the height of the
skip list and thus are O(log n)
with high probability
To analyze the scan-forward
steps, we use yet another
probabilistic fact:
Fact 4: The expected number of

coin tosses required in order
to get a tail is 2

list, the destination key does
not belong to a higher list
= A scan-forward step is

associated with a former coin
toss that gave a talil

By Fact 4, in each list the
expected number of scan-
forward steps is 2

Thus, the expected number of
scan-forward steps is O(log n)

We conclude that a search in a
skip list takes O(log n)
expected time

The analysis of insertion and

deletion gives similar results
29



Summary

— s

Randomized algorithm

Las Vegas algorithm

Monte Carlo algorithm
Randomized selection algorithm
Skip lists

30



	COMP9024: Data Structures and Algorithms
	 Contents
	Randomized Algorithm (1/2)
	Randomized Algorithm (2/2)
	An Example (1/5)
	An Example (2/5)
	An Example (3/5)
	An Example (4/5)
	An Example (5/5)
	Quick Selection
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Worst-Case Time complexity (1/3)
	Worst-Case Time complexity (2/3)
	Worst-Case Time complexity (3/3)
	Expected Running Time (1/2)
	Expected Running Time (2/2)
	Skip Lists
	What is a Skip List
	Search
	Insertion
	Deletion
	Implementation
	Space Usage
	Height
	Search and Update Times
	Summary

