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Randomized Algorithm (1/2)
 A randomized algorithm is an algorithm that employs 

a degree of randomness as part of its logic. 
 The algorithm typically uses uniformly random bits as an 

auxiliary input to guide its behaviour, in the hope of 
achieving good performance in the average case over all 
possible choices of random bits. 

 The performance of a randomized algorithm is a 
random variable determined by the random bits.
 The worst-case performance is typically bad with a very 

small probability but the average performance can be good. 
 Two categories: Las Vegas algorithm and Monte 

Carlo algorithm
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Randomized Algorithm (2/2)
 Las Vegas algorithm

 A Las Vegas algorithm is a randomized algorithm that 
always gives correct results

 Monte Carlo algorithm
 A Monte Carlo algorithm is a randomized algorithm whose 

output may be incorrect with a certain (typically small) 
probability
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An Example (1/5)
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 Given an unsorted list where half of the elements have 
a key k1 and the other half have a key k2,  find an 
element in the list with key k1.  



An Example (2/5)
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Algorithm findKey(L, k1)
Input: list L, key k1
Output: an element in L with key k1
{

repeat
randomly select e∈L; 

until key(e)=k1;
return e;

}

 Las Vegas algorithm



An Example (3/5)
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 Probability of success: 1
 The number of iterations varies and can be 

arbitrarily large, but the expected number 
of iterations is: 

lim
𝑛𝑛→∞

∑𝑖𝑖=0𝑛𝑛 𝑖𝑖
2𝑖𝑖

= 2

 The expected time complexity is O(1)

Analysis:



An Example (4/5)
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 Monte Carlo algorithm

Algorithm findKey(L, k1)
Input: list L, key k1
Output: an element in L with key k1
{

i=0;
repeat

randomly select e∈L; 
i++;  

until key(e)=k1 or i=m;
return e;

}



An Example (5/5)
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Analysis:
 After k iterations, the probability of finding an 

element with key k1 is 1 − 1
2

𝑘𝑘

 Time complexity is O(1) but its does not 
guarantee success 



Quick Selection
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Worst-Case Time complexity (1/3)

 What is the worst-case?
 Each time the smallest key or the largest key is 

selected, and thus only one element (the one with the 
smallest key or the one with the largest key) is 
excluded on each iteration

 The worst-case time complexity is 
 O(n)+O(n-1)+…+O(2)+O(1)

=O((n(n+1)/2))=O(n2)
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Worst-Case Time complexity (2/3)

 What is the probability of the worst-case?
 Let Ɛₖ be the event that we pick the largest or 

smallest element when there are k elements left.
 Let event Ɛ be the worst-case. We have:

Ɛ=∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝜀𝜀𝑖𝑖

 What is P(Ɛ)=P(∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝜀𝜀𝑖𝑖)?

 Since all Ɛi's are independent, this simplifies to 
P(Ɛ)=P(∏𝑖𝑖=1

𝑖𝑖=𝑛𝑛 𝜀𝜀𝑖𝑖)=∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝑃𝑃(𝜀𝜀𝑖𝑖)
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Worst-Case Time complexity (3/3)

 P(Ɛ1 ) = 1. 
 If i>1, then P(Ɛi)=

2
𝑖𝑖
. Thus 

P(Ɛ)=∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝑃𝑃(𝜀𝜀𝑖𝑖)=∏𝑖𝑖=2

𝑖𝑖=𝑛𝑛 2
𝑖𝑖
= 2

𝑛𝑛−1

𝑛𝑛!

 if n = 31, then 2n-1<1010 and n! ≈ 8 × 1033 

P(Ɛ)<1/1022. This is extremely unlikely!
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Expected Running Time 
(1/2)

 Consider a recursive call of quick-select on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than or equal to 3s/4

 A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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 Probabilistic Fact #1: The expected number of coin tosses required in 
order to get one head is two

 Probabilistic Fact #2: Expectation is a linear function:
 E(X + Y ) = E(X ) + E(Y )
 E(cX ) = cE(X )

 Let T(n) denote the expected running time of quick-select.
 By Fact #2,

 T(n) < T(3n/4) + bn*(expected # of calls for a good call)
 By Fact #1,

 T(n) < T(3n/4) + 2bn
 That is, T(n) is a geometric series:

 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
 So T(n) is O(n).
 We can solve the selection problem in O(n) expected 

time.

Expected Running Time 
(2/2)
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Skip Lists
+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315
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What is a Skip List
 A skip list for a set S of distinct (key, element) items is a series of 

lists S0, S1 , … , Sh such that
 Each list Si contains the special keys +∞ and −∞
 List S0 contains the keys of S in nondecreasing order 
 Each list is a subsequence of the previous one, i.e.,

S0 ⊇ S1 ⊇ … ⊇ Sh
 List Sh contains only the two special keys

 We show how to use a skip list to implement the dictionary ADT

56 64 78 +∞31 34 44−∞ 12 23 26

+∞−∞

+∞31−∞

64 +∞31 34−∞ 23

S0

S1

S2

S3
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Search
 We search for a key x in a a skip list as follows:

 We start at the first position of the top list 
 At the current position p, we compare x with y ← key(next(p))

x = y: we return element(next(p))
x > y: we “scan forward” 
x < y: we “drop down”

 If we try to drop down past the bottom list, we return null
 Example: search for 78

+∞−∞

S0

S1

S2

S3

+∞31−∞

64 +∞31 34−∞ 23

56 64 78 +∞31 34 44−∞ 12 23 26
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 To insert an entry (x, o) into a skip list, we use a randomized 
algorithm:
 We repeatedly toss a coin until we get a tail, and we denote with i

the number of times the coin came up with heads
 If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each 

containing only the two special keys
 We search for x in the skip list and find the positions p0, p1 , …, pi 

of the items with largest key less than x in each list S0, S1, … , Si
 For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

 Example: insert key 15, with i = 2

Insertion

+∞−∞ 10 36

+∞−∞

23

23 +∞−∞

S0

S1

S2

+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315
p0

p1

p2



25

Deletion
 To remove an entry with key x from a skip list, we proceed as 

follows:
 We search for x in the skip list and find the positions p0, p1 , …, pi 

of the items with key x, where position pj is in list Sj

 We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

 We remove all but one list containing only the two special keys
 Example: remove key 34

−∞ +∞4512

−∞ +∞

23

23−∞ +∞

S0

S1

S2

−∞ +∞

S0

S1

S2

S3

−∞ +∞4512 23 34

−∞ +∞34

−∞ +∞23 34
p0

p1

p2
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Implementation

 We can implement a skip list 
with  quad-nodes

 A quad-node stores:
 entry
 link to the node prev
 link to the node next
 link to the node below
 link to the node above

 Also, we define special keys 
PLUS_INF and MINUS_INF, 
and we modify the key 
comparator to handle them  

x

quad-node
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Space Usage

 The space used by a skip list 
depends on the random bits 
used by each invocation of the 
insertion algorithm

 We use the following two basic 
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when 
flipping a coin is 1/2i

Fact 2: If each of n entries is 
present in a set with 
probability p, the expected size 
of the set is np

 Consider a skip list with n
entries
 By Fact 1, we insert an entry 

in list Si with probability 1/2i

 By Fact 2, the expected size 
of list Si is n/2i

 The expected number of 
nodes used by the skip list is

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

 Thus, the expected space 
usage of a skip list with n
items is O(n)
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Height

 The running time of the 
search and insertion 
algorithms is affected by the 
height h of the skip list

 We show that with high 
probability, a skip list with n
items has height O(log n)

 We use the following 
additional probabilistic fact:
Fact 3: If each of n events has 

probability p, the probability 
that at least one event 
occurs is at most np

 Consider a skip list with n
entries
 By Fact 1, we insert an entry 

in list Si with probability 1/2i

 By Fact 3, the probability that 
list Si has at least one item is 
at most n/2i

 By picking i = 3log n, we have 
that the probability that S3log n
has at least one entry is
at most

n/23log n = n/n3 = 1/n2

 Thus a skip list with n entries 
has height at most 3log n with 
probability at least 1 − 1/n2
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Search and Update Times
 The search time in a skip list 

is proportional to
 the number of drop-down 

steps, plus
 the number of scan-forward 

steps
 The drop-down steps are 

bounded by the height of the 
skip list and thus are O(log n) 
with high probability

 To analyze the scan-forward 
steps, we use yet another 
probabilistic fact:
Fact 4: The expected number of 

coin tosses required in order 
to get a tail is 2

 When we scan forward in a 
list, the destination key does 
not belong to a higher list
 A scan-forward step is 

associated with a former coin 
toss that gave a tail

 By Fact 4, in each list the 
expected number of scan-
forward steps is 2

 Thus, the expected number of 
scan-forward steps is  O(log n)

 We conclude that a search in a 
skip list takes O(log n) 
expected time

 The analysis of insertion and 
deletion gives similar results
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Summary

 Randomized algorithm
 Las Vegas algorithm
 Monte Carlo algorithm
 Randomized selection algorithm
 Skip lists
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