
1

COMP9024: Data Structures and
Algorithms

Randomized Algorithms

2

Contents

 Randomized Algorithm
 Quick Selection
 Skip Lists

Randomized Algorithm (1/2)
 A randomized algorithm is an algorithm that employs

a degree of randomness as part of its logic.
 The algorithm typically uses uniformly random bits as an

auxiliary input to guide its behaviour, in the hope of
achieving good performance in the average case over all
possible choices of random bits.

 The performance of a randomized algorithm is a
random variable determined by the random bits.
 The worst-case performance is typically bad with a very

small probability but the average performance can be good.
 Two categories: Las Vegas algorithm and Monte

Carlo algorithm
3

Randomized Algorithm (2/2)
 Las Vegas algorithm

 A Las Vegas algorithm is a randomized algorithm that
always gives correct results

 Monte Carlo algorithm
 A Monte Carlo algorithm is a randomized algorithm whose

output may be incorrect with a certain (typically small)
probability

4

An Example (1/5)

5

 Given an unsorted list where half of the elements have
a key k1 and the other half have a key k2, find an
element in the list with key k1.

An Example (2/5)

6

Algorithm findKey(L, k1)
Input: list L, key k1
Output: an element in L with key k1
{

repeat
randomly select e∈L;

until key(e)=k1;
return e;

}

 Las Vegas algorithm

An Example (3/5)

7

 Probability of success: 1
 The number of iterations varies and can be

arbitrarily large, but the expected number
of iterations is:

lim
𝑛𝑛→∞

∑𝑖𝑖=0𝑛𝑛 𝑖𝑖
2𝑖𝑖

= 2

 The expected time complexity is O(1)

Analysis:

An Example (4/5)

8

 Monte Carlo algorithm

Algorithm findKey(L, k1)
Input: list L, key k1
Output: an element in L with key k1
{

i=0;
repeat

randomly select e∈L;
i++;

until key(e)=k1 or i=m;
return e;

}

An Example (5/5)

9

Analysis:
 After k iterations, the probability of finding an

element with key k1 is 1 − 1
2

𝑘𝑘

 Time complexity is O(1) but its does not
guarantee success

Quick Selection

10

11

12

13

14

15

Worst-Case Time complexity (1/3)

 What is the worst-case?
 Each time the smallest key or the largest key is

selected, and thus only one element (the one with the
smallest key or the one with the largest key) is
excluded on each iteration

 The worst-case time complexity is
 O(n)+O(n-1)+…+O(2)+O(1)

=O((n(n+1)/2))=O(n2)

16

Worst-Case Time complexity (2/3)

 What is the probability of the worst-case?
 Let Ɛₖ be the event that we pick the largest or

smallest element when there are k elements left.
 Let event Ɛ be the worst-case. We have:

Ɛ=∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝜀𝜀𝑖𝑖

 What is P(Ɛ)=P(∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝜀𝜀𝑖𝑖)?

 Since all Ɛi's are independent, this simplifies to
P(Ɛ)=P(∏𝑖𝑖=1

𝑖𝑖=𝑛𝑛 𝜀𝜀𝑖𝑖)=∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝑃𝑃(𝜀𝜀𝑖𝑖)

17

Worst-Case Time complexity (3/3)

 P(Ɛ1) = 1.
 If i>1, then P(Ɛi)=

2
𝑖𝑖
. Thus

P(Ɛ)=∏𝑖𝑖=1
𝑖𝑖=𝑛𝑛 𝑃𝑃(𝜀𝜀𝑖𝑖)=∏𝑖𝑖=2

𝑖𝑖=𝑛𝑛 2
𝑖𝑖
= 2

𝑛𝑛−1

𝑛𝑛!

 if n = 31, then 2n-1<1010 and n! ≈ 8 × 1033

P(Ɛ)<1/1022. This is extremely unlikely!

18

19

Expected Running Time
(1/2)

 Consider a recursive call of quick-select on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than or equal to 3s/4

 A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

20

 Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

 Probabilistic Fact #2: Expectation is a linear function:
 E(X + Y) = E(X) + E(Y)
 E(cX) = cE(X)

 Let T(n) denote the expected running time of quick-select.
 By Fact #2,

 T(n) < T(3n/4) + bn*(expected # of calls for a good call)
 By Fact #1,

 T(n) < T(3n/4) + 2bn
 That is, T(n) is a geometric series:

 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
 So T(n) is O(n).
 We can solve the selection problem in O(n) expected

time.

Expected Running Time
(2/2)

21

Skip Lists
+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315

22

What is a Skip List
 A skip list for a set S of distinct (key, element) items is a series of

lists S0, S1 , … , Sh such that
 Each list Si contains the special keys +∞ and −∞
 List S0 contains the keys of S in nondecreasing order
 Each list is a subsequence of the previous one, i.e.,

S0 ⊇ S1 ⊇ … ⊇ Sh
 List Sh contains only the two special keys

 We show how to use a skip list to implement the dictionary ADT

56 64 78 +∞31 34 44−∞ 12 23 26

+∞−∞

+∞31−∞

64 +∞31 34−∞ 23

S0

S1

S2

S3

23

Search
 We search for a key x in a a skip list as follows:

 We start at the first position of the top list
 At the current position p, we compare x with y ← key(next(p))

x = y: we return element(next(p))
x > y: we “scan forward”
x < y: we “drop down”

 If we try to drop down past the bottom list, we return null
 Example: search for 78

+∞−∞

S0

S1

S2

S3

+∞31−∞

64 +∞31 34−∞ 23

56 64 78 +∞31 34 44−∞ 12 23 26

24

 To insert an entry (x, o) into a skip list, we use a randomized
algorithm:
 We repeatedly toss a coin until we get a tail, and we denote with i

the number of times the coin came up with heads
 If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each

containing only the two special keys
 We search for x in the skip list and find the positions p0, p1 , …, pi

of the items with largest key less than x in each list S0, S1, … , Si
 For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

 Example: insert key 15, with i = 2

Insertion

+∞−∞ 10 36

+∞−∞

23

23 +∞−∞

S0

S1

S2

+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315
p0

p1

p2

25

Deletion
 To remove an entry with key x from a skip list, we proceed as

follows:
 We search for x in the skip list and find the positions p0, p1 , …, pi

of the items with key x, where position pj is in list Sj

 We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

 We remove all but one list containing only the two special keys
 Example: remove key 34

−∞ +∞4512

−∞ +∞

23

23−∞ +∞

S0

S1

S2

−∞ +∞

S0

S1

S2

S3

−∞ +∞4512 23 34

−∞ +∞34

−∞ +∞23 34
p0

p1

p2

26

Implementation

 We can implement a skip list
with quad-nodes

 A quad-node stores:
 entry
 link to the node prev
 link to the node next
 link to the node below
 link to the node above

 Also, we define special keys
PLUS_INF and MINUS_INF,
and we modify the key
comparator to handle them

x

quad-node

27

Space Usage

 The space used by a skip list
depends on the random bits
used by each invocation of the
insertion algorithm

 We use the following two basic
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when
flipping a coin is 1/2i

Fact 2: If each of n entries is
present in a set with
probability p, the expected size
of the set is np

 Consider a skip list with n
entries
 By Fact 1, we insert an entry

in list Si with probability 1/2i

 By Fact 2, the expected size
of list Si is n/2i

 The expected number of
nodes used by the skip list is

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

 Thus, the expected space
usage of a skip list with n
items is O(n)

28

Height

 The running time of the
search and insertion
algorithms is affected by the
height h of the skip list

 We show that with high
probability, a skip list with n
items has height O(log n)

 We use the following
additional probabilistic fact:
Fact 3: If each of n events has

probability p, the probability
that at least one event
occurs is at most np

 Consider a skip list with n
entries
 By Fact 1, we insert an entry

in list Si with probability 1/2i

 By Fact 3, the probability that
list Si has at least one item is
at most n/2i

 By picking i = 3log n, we have
that the probability that S3log n
has at least one entry is
at most

n/23log n = n/n3 = 1/n2

 Thus a skip list with n entries
has height at most 3log n with
probability at least 1 − 1/n2

29

Search and Update Times
 The search time in a skip list

is proportional to
 the number of drop-down

steps, plus
 the number of scan-forward

steps
 The drop-down steps are

bounded by the height of the
skip list and thus are O(log n)
with high probability

 To analyze the scan-forward
steps, we use yet another
probabilistic fact:
Fact 4: The expected number of

coin tosses required in order
to get a tail is 2

 When we scan forward in a
list, the destination key does
not belong to a higher list
 A scan-forward step is

associated with a former coin
toss that gave a tail

 By Fact 4, in each list the
expected number of scan-
forward steps is 2

 Thus, the expected number of
scan-forward steps is O(log n)

 We conclude that a search in a
skip list takes O(log n)
expected time

 The analysis of insertion and
deletion gives similar results

30

Summary

 Randomized algorithm
 Las Vegas algorithm
 Monte Carlo algorithm
 Randomized selection algorithm
 Skip lists

	COMP9024: Data Structures and Algorithms
	 Contents
	Randomized Algorithm (1/2)
	Randomized Algorithm (2/2)
	An Example (1/5)
	An Example (2/5)
	An Example (3/5)
	An Example (4/5)
	An Example (5/5)
	Quick Selection
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Worst-Case Time complexity (1/3)
	Worst-Case Time complexity (2/3)
	Worst-Case Time complexity (3/3)
	Expected Running Time (1/2)
	Expected Running Time (2/2)
	Skip Lists
	What is a Skip List
	Search
	Insertion
	Deletion
	Implementation
	Space Usage
	Height
	Search and Update Times
	Summary

