
Robot Vision

So far …
• Following our evolutionary development of robots

• Behaviour-based robots

• Simple robots (like insects) that do not need
world models

• SLAM and episodic memory

• Robots with simple sensory systems that
create and use world models

This time …

• Adding more complex sensors that are need for
more complex tasks

Robot Vision
• The aim of robot vision is to transform radiation

reflected from objects into an internal representation
of the objects, appropriate for the robot’s task

• Three steps are involved:

1. Image Formation

2. Image Analysis

3. Understanding

The State of Computer
Vision

• The general computer vision problem is unsolved

• Develop a visual system as good as humans

• No progress for 40 years

• A lot of progress in specific computer vision problems

• e.g. face recognition used in

• digital cameras

• surveillance

• security

• e.g. Inspection in Automation

• e.g. pick and place

The General Vision Problem

• Maybe there’s no such thing

• Maybe our vision is an accumulation of lots of
specialised vision systems

Robot Vision
and

Image Processing

• Robot Vision is in an embedded system and
ultimately should work in real time

• Image Processing can be off-line and is not time
critical

Doggie Cam (1)

Object Recognition

Computer Vision in Action

Doggie Cam (2)

What the robot sees

Image Formation

Image Formation

Camera Image

Palette

Light image is
created by

camera

Each pixel is
a number that

is an index
into a palette
of colours or
grey scales.

A “frame grabber” captures camera image and stores it in special purpose
memory.

Image Features
• Contrast

• dullness or sharpness

• e.g. if picture contains a lot of white and lot of black

• Dynamic Range

• how much of grey scale is used)

• Frequency

• amount of change between pixels on a line

Object Features
• Illumination (incident light)

• Reflectance (reflected light)

• Depth (distance from camera)

• Orientation (angle of normal to surface)

• Other features:

• shading

• colour

• texture

Colour Recognition

Camera Image

YUV Colour Space

Polygons in UV Plane

105, 117, 113, orange
105, 116, 112, orange
102, 117, 113, orange
102, 116, 114, orange
103, 117, 111, orange
103, 117, 112, orange
103, 118, 110, orange
99, 117, 112, orange
98, 116, 118, orange
99, 116, 117, orange
106, 111, 114, orange
114, 115, 123, yellow
128, 111, 124, yellow
150, 112, 121, yellow
173, 111, 117, yellow
171, 110, 110, yellow
145, 112, 108, yellow
121, 111, 110, yellow
106, 111, 112, orange
107, 112, 112, orange
104, 114, 114, orange
100, 115, 114, orange
100, 117, 117, orange
98, 115, 113, orange
100, 114, 116, orange
97, 117, 112, orange
102, 115, 109, orange
104, 118, 109, orange
100, 114, 108, orange
97, 115, 110, orange
101, 114, 110, orange
99, 116, 113, orange
98, 116, 113, orange

C4.5

if (u <= 107)
yellow;
else

if (v <= 100)
orange;
else

if (y <= 136)
orange;

else
yellow;

Warning: In practice data sets and decision trees are
much larger than this example!

Learning in Perception

Colour Classes using C4.5

Nearest Neighbour

Binary Vision

Binary Vision
• The original image is “thresholded”, i.e.

new[x, y] = (old[x, y] > threshold)

• Every pixel brighter than a certain threshold is given
a value of 1 otherwise it is zero.

• Easy to process and powerful enough to use in
some industrial applications

– e.g. picking parts from an assembly line.

Binary Vision

• Or use colour to create binary image

new[x, y] = (old[x, y, u] is orange)

• Use colour lookup as before to determine colour

Blob Finding

Blob Finding 
(Connected Component Analysis)

• How do we find a region in an image?

• e.g. find the orange ball

• Assign a different number to every connected component of an image

• Requires two passes.

• First scan a 2 x 2 window over the binary image and observe the pattern:

• Scan along each row from left to right, starting at the top.

• When we inspect cell A, cells B, C and D have already been labelled.

C B

D A

First Pass

• A is 0 if the image is 0, otherwise the number
identifies the component.

• If the three neighbours of A are all 0 a new label
is assigned to A.

• If C has been labelled we label A similarly.

• If C is 0 and either B or D has been labelled we
label A similarly.

000000000000000000000000000000
000000000000000000000011110000
001110000000000000111111111110
011111111000001111111111111111
011111111111111111111111111111

C B

D A

Second Pass

• Second pass re-labels objects uniformly.

• If B and D have different labels

• we have given two labels to the same object

• make the two labels are equivalent.

000000000000000000000000000000
000000000000000000000011110000
002220000000000000333311111110
022222222000004444111111111111
022222222222221111111111111111

C B

D A

Edge Detection

Edge Detection

• The first step in robot vision system is to
recognise the intrinsic features of the image.

• Some of the most important features are edges.

• There is evidence that the human vision system
has edge detectors.

Looking for  
Edges

Edge detection requires
several steps

1. Smoothing and sharpening of the image to remove
noise.

2. Finding the edges by filtering the image.

3. Connecting lines from the edges found in the
previous step.

Smoothing
• Real images always contain noise.
• Smoothing tries to remove isolated bright and

dark regions of a picture.
• One smoothing method is to replace the

brightness value at each pixel by average
brightness of eight neighbours.

• Called local averaging.
• Has side-effect of blurring image.

Smoothing Example
• Given a simple 4 x 4 picture matrix:

• Smooth this matrix using a local-averaging technique
and a 3 x 3 pixel window.

9 9 9 3
9 9 3 3
9 3 3 3
3 3 3 3

Solution
• There are four 3 x 3 pixel windows in the matrix.

• Replace middle value in each window by
average of all the values in the window.

9 9 9 3
9 9 3 3
9 3 3 3
3 3 3 3

9 9 9 3
9 7 5 3
9 5 4 3
3 3 3 3

Edge Detection Operators
• The ideal edge can be graphed on a grey-scale as:

• To find the edges in a grey-scale image we
calculate the first-derivative of the adjacent grey-
scale values, i.e. the gradient.

The Roberts Cross Operator

The Roberts cross operator approximates the first
derivative.

where i(m,n) is the image intensity of pixel (m,n).

R i, j() = i m +1,n +1()− i m,n()⎡⎣ ⎤⎦
2
+ i m,n +1()− i m +1,n()⎡⎣ ⎤⎦

2

 9 9 9 3
 9 7 5 3
 9 5 4 3
 3 3 3 3

Roberts Operator Example
• Replace grey-scale values with values obtained

using the Roberts operator.

• If a Roberts value cannot be obtained for given
pixel, replace that pixel with an X.

Roberts Operator Example
(Solution)

• Applying the Roberts operator to each 2 x 2
window in the picture gives:

• Apply threshold to get a binary image.

 2.0 4.5 6.3 X

 4.5 3.0 2.2 X

 6.3 2.2 1.0 X

 X X X X

Thresholding

• In both matrices connecting ones gives the edge.

• 6 is better.

With a threshold of 4:

0 1 1 X
1 0 0 X
1 0 0 X
X X X X

With a threshold of 6:

0 0 1 X
0 0 0 X
1 0 0 X
X X X X

Line Finding

RANSAC
(RANdom SAmple Consensus)

1. Select randomly the minimum number of points required to
determine the model parameters.

2. Solve for the parameters of the model.

3. Determine how many points from the set of all points fit with a
predefined tolerance ε.

4. If the fraction of the number of inliers over the total number
points in the set exceeds a predefined threshold τ, re-estimate
the model parameters using all the identified inliers and
terminate.

5. Otherwise, repeat steps 1 through 4 (maximum of N times).

RANSAC

Gaussian Blur

Weighted average

0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067

0.00002292 0.00078634 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292

0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117

0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771

0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117

0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292

0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067

G(x) = 1
2πσ 2 e

− x
2+y2

2σ 2

Wikipedia

Image Pyramid

SIFT Features
(Scale-Invariant Feature Transform)

1. Build a Difference of Gaussians pyramid. Take the difference of adjacent pairs of images from
the scale-space pyramid.

2. Find the extrema points in the Difference of Gaussians pyramid. Each point in the pyramid
has 26 neighbours, eight on the same scale and nine each in the above and below scale. The
points that are the minimum or maximum of their 26 neighbours are the extrema points. Typically
found near corners and edges in an image at a given scale.

3. Rejection of unstable extrema points. Points with a low absolute value in the Difference of
Gaussians pyramid or points that are too edge-like are unstable in the presence of noise. Edge
points are similar to nearby points.

4. Orientation assignment. Each remaining key-point is assigned a principal orientation. This is
the most prominent gradient direction of a small neighbourhood of pixels around the key-point.

5. Generation of key-point description vectors. For each key-point, a neighbourhood of pixels is
used to build an array of histograms of gradients. The histograms are normalised to the principal
orientation of the key-point to make the descriptor vector rotation invariant. The histogram is
normalised on gradient magnitude of the pixel neighbourhood to increase robustness to
changes in contrast and lighting. The result is a 128-dimensional description vector for each
key-point.

SIFT Features

