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1 Introduction

Iterative Compression
For a minimization problem:

• Compression step: Given a solution of size k + 1, compress it to a solution of size k or prove that there is
no solution of size k

• Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and
larger subinstances

• Seen a lot of success in Parameterized Complexity

• Examples: best known fixed parameter algorithms for (Directed) Feedback Vertex Set, Edge Bipar-
tization, Almost 2-SAT, . . .

Example: Vertex Cover
A vertex cover in a graph G = (V,E) is a subset of its vertices S ⊆ V such that every edge of G has at least one
endpoint in S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size k?

We will design a (slow) iterative compression algorithm for Vertex Cover to illustrate the technique.
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Vertex Cover: Compression Step

Comp-VC
Input: graph G = (V,E), integer k, vertex cover C of size k + 1 of G
Output: a vertex cover C∗ of size ≤ k of G if one exists

C

C ′

C ′

V \ C

• Go over all partitions (C ′, C ′) of C

• C∗ = C ′ ∪N(C ′)

• If C ′ is an independent set and |C∗| ≤ k then return C∗

Vertex Cover: Iteration Step
Use algorithm for Comp-VC to solve Vertex Cover.

• Order vertices: V = {v1, v2, . . . , vn}

• Define Gi = G[{v1, v2, . . . , vi}]

• C0 = ∅

• For i = 1..n, find a vertex cover Ci of size ≤ k of Gi using the algorithm for Comp-VC with input Gi and
Ci−1 ∪ {vi}. If Gi has no vertex cover of size ≤ k, then G has no vertex cover of size ≤ k.

Final running time: O∗(2k)

2 Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊆ V such that G− S is acyclic.

Feedback Vertex Set (FVS)

Input: Multigraph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size at most k?

Note: We already saw an O∗((3k)k) time algorithm for FVS. We will now aim for a O∗(ck) time algorithm, with
c ∈ O(1).

Compression Problem

Comp-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of G
Output: a feedback vertex set S∗ of size ≤ k of G if one exists
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Iteration step

• Order vertices: V = {v1, v2, . . . , vn}

• Define Gi = G[{v1, v2, . . . , vi}]

• S0 = ∅

• For i = 1..n, find a feedback vertex set Si of size ≤ k of Gi using the algorithm for Comp-FVS with input Gi
and Si−1 ∪ {vi}. If Gi has no feedback vertex set of size ≤ k, then G has no feedback vertex set of size ≤ k.

Suppose Comp-FVS can be solved in O∗(ck) time. Then, using this iteration, FVS can be solved in O∗(ck) time.

Compression step
To solve Comp-FVS, go through all partitions (S′, S′) of S. For each of them, we will want to find a feedback
vertex set S∗ of G with |S∗| < |S| and S′ ⊆ S∗ ⊆ V \ S′ if one exists. Equivalently, find a feedback vertex set S′′

of G− S′ with |S′′| < |S′| and S′′ ∩ S′ = ∅. We arrive at the following problem:

Disjoint-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of G
Output: a feedback vertex set S∗ of G with |S∗| ≤ k and S∗ ∩ S = ∅, if one exists

If Disjoint-FVS can be solved in O∗(dk) time, then Comp-FVS can be solved in

O∗

(
k+1∑
i=0

(
k + 1

i

)
di

)
⊆ O∗((d+ 1)k) time.

Algorithm for Disjoint-FVS
Denote A := V \ S.

S A

Simplification rules for Disjoint-FVS
Start with S∗ = ∅.

(cycle-in-S)
If G[S] is not acyclic, then return No.

(budget-exceeded)
If k < 0, then return No.

(finished)
If G− S∗ is acyclic, then return S∗.

(creates-cycle)
If ∃v ∈ A such that G[S ∪ {v}] is not acyclic, then add v to S∗ and remove v from G.

(Degree-(≤ 1))
If ∃v ∈ V with dG(v) ≤ 1, then remove v from G.
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(Degree-2)
If ∃v ∈ V with dG(v) = 2 and at least one neighbor of v is in A, then add an edge between the neighbors of v (even
if there was already an edge) and remove v from G.

Simplified instance:

S A

Branching rule for Disjoint-FVS
Select a vertex v ∈ A with at least 2 neighbors in S. Such a vertex exists if no simplification rule applies (for
example, we can take a leaf in G[A]). Branch into two subproblems:

v ∈ S∗: add v to S∗, remove v from G, and decrease k by 1

v /∈ S∗: add v to S

Exercise: Running time

• Prove that this algorithm has running time O∗(4k).

Result for Feedback Vertex Set

Theorem 1. Feedback Vertex Set can be solved in O∗(5k) time.

3 Min r-Hitting Set

A set system S is a pair (V,H), where V is a finite set of elements and H is a set of subsets of V . The rank of S is
the maximum size of a set in H, i.e., maxY ∈H |Y |.

A hitting set of a set system S = (V,H) is a subset X of V such that X contains at least one element of each
set in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

(universe)-Min-r-Hitting Set (r-HS)

Input: A rank r set system S = (V,H)
Parameter: n = |V |
Output: A smallest hitting set of S

Note: The corresponsing decision problem is trivially FPT.
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

Go over all partitions (X ′, X ′) of X such that |X ′| ≥ 2|X| − n − 1. Reject a partition if there is a Y ∈ H such
that Y ⊆ X ′. Compute a hitting set X ′′ of size ≤ k − |X ′| for (V ′, H ′), where V ′ = V \X and H ′ = {Y ∩ V ′ :
Y ∈ H ∧ Y ∩X ′ = ∅}, if one exists. If one exists, then return X∗ = X ′ ∪X ′′.

• The algorithm considers only partitions into (X ′, X ′) such that |X ′| ≥ 2|X| − n− 1. Number of partitions:

O

(
max

{
22n/3, max

2n/3≤j≤n

(
j

2j − n

)})
= O

(
max

2n/3≤j≤n

(
j

2j − n

))
• The subinstances (V ′, H ′) where V ′ = V \ X and H ′ = {Y ∩ V : Y ∈ H ∧ Y ∩ X ′ = ∅} are instances of

(r − 1)-HS

• Suppose (r − 1)-HS can be solved in O∗((αr−1)n) time. Then, r-HS can be solved in

O∗
(

max
2n/3≤j≤n

(
j

2j − n

)
(αr−1)n−j

)
time (1)

• For example, using a O(1.6278n) algorithm for 3-HS [Wahlström ’07], we obtain a O(1.8704n) time algorithm
for 4-HS 1.

Iteration Step

• (V,H) instance of r-HS with V = {v1, v2, . . . , vn}

• Vi = {v1, v2, . . . , vi} for i = 1 to n

• Hi = {Y ∈ H : Y ⊆ Vi}

• Note that |Xi−1| ≤ |Xi| ≤ |Xi−1|+ 1 where Xj is a minimum hitting set of the instance (Vi, Hi)

Theorem 2 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010]). 4-HS can be solved in O(1.8704n) time.

• One can generalize this result to the counting version of r-HS for any fixed r: count the number of minimum
hitting sets of the given set system.

1the maximum in (1) is obtained for j ≈ 0.6824 · n
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#r-Hitting Set

Theorem 3 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010]). If there exists a O∗((αk−1)n) time algorithm
for #(r − 1)-HS with αr−1 ≤ 2, then #r-HS can be solved in time

O∗
(

max
2n/3≤j≤n

{(
j

2j − n

)
(αr−1)n−j

})
.

• If αr−1 ≥ 1.6553, then the following result is better

Theorem 4 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010]). If there exists a O∗((αr−1)n) time algorithm for
#(r − 1)-HS with αk−1 ≤ 2, then #r-HS can be solved in time

min
0.5≤β≤1

max

{
O∗
((

n

βn

))
, O∗

(
2βn(αr−1)n−βn

)}
.

Results for r-HS and #r-HS

r #r-HS r-HS

2 O(1.2377n) [Wahlström ’08] O(1.2002n) [Xiao, Nagamoshi ’13]

3 O(1.7198n) [Theorem 3] O(1.6278n) [Wahlström ’07]

4 O(1.8997n) [Theorem 4] O(1.8704n) [Theorem 3]

5 O(1.9594n) [Theorem 4] O(1.9489n) [Theorem 4]

6 O(1.9824n) [Theorem 4] O(1.9781n) [Theorem 4]

7 O(1.9920n) [Theorem 4] O(1.9902n) [Theorem 4]

Faster algorithm for some of these problems are known [Gaspers, Lee, 2017], [Cochefert, Couturier, Gaspers, Kratsch,

2016], [Fomin, Gaspers, Lokshtanov, Saurabh, 2016].

4 Further Reading

• Chapter 4, Iterative Compression in Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015.

• Section 11.3, Iterative Compression in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

• Section 6.1, Iterative Compression: The Basic Technique in Rodney G. Downey and Michael R. Fellows.
Fundamentals of Parameterized Complexity. Springer, 2013.

• Section 6.2, Edge Bipartization in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

6


	Introduction
	Feedback Vertex Set
	Min r-Hitting Set
	Further Reading

