4. Inclusion-Exclusion

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1 The Principle of Inclusion-Exclusion 1
2 Counting Hamiltonian Cycles 2
3 Coloring 4
4 Counting Set Covers 5
5 Counting Set Partitions 6
6 Further Reading 8

1 The Principle of Inclusion-Exclusion

... for 3 sets

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$
$$|A \cup B \cup C| = \sum_{X \subseteq \{A, B, C\}} (-1)^{|X|+1} \cdot \left| \bigcap X \right|$$

... intersection version

$$\begin{aligned} |\underline{A} \cap \underline{B} \cap C| &= |U| - |\overline{A}| - |\overline{B}| - |\overline{C}| + |\overline{A} \cap \overline{B}| + |\overline{A} \cap \overline{C}| + |\overline{B} \cap \overline{C}| - |\overline{A} \cap \overline{B} \cap \overline{C}| \\ |\underline{A} \cap \underline{B} \cap C| &= \sum_{X \subseteq \{\underline{A}, \underline{B}, C\}} (-1)^{|X|} \cdot \left| \bigcap \overline{X} \right| \end{aligned}$$

Inclusion-Exclusion Principle - intersection version

Theorem 1 (IE-theorem – intersection version). Let $U = A_0$ be a finite set, and let $A_1, \ldots, A_k \subseteq U$.

$$\left| \bigcap_{i \in \{1, \dots, k\}} A_i \right| = \sum_{J \subseteq \{1, \dots, k\}} (-1)^{|J|} \left| \bigcap_{i \in J} \overline{A_i} \right|,$$

where $\overline{A_i} = U \setminus A_i$ and $\bigcap_{i \in \emptyset} = U$.

Proof sketch. • An element $e \in \bigcap_{i \in \{1,...,k\}} A_i$ is counted on the right only for $J = \emptyset$.

- An element $e \notin \bigcap_{i \in \{1,...,k\}} A_i$ is counted on the right for all $J \subseteq I$, where I is the set of indices i such that $e \notin A_i$.
 - counted negatively for each odd-sized $J \subseteq I$, and positively for each even-sized $J \subseteq I$
 - a non-empty set has as many even-sized subsets as odd-sized subsets

2 Counting Hamiltonian Cycles

Walks and cycles

- A walk of length k in a graph G = (V, E) (short, a k-walk) is a sequence of vertices v_0, v_1, \dots, v_k such that $v_i v_{i+1} \in E$ for each $i \in \{0, \dots, k-1\}$.
- A walk (v_0, v_1, \ldots, v_k) is closed if $v_0 = v_k$.
- A cycle is a 2-regular subgraph of G.
- A Hamiltonian cycle of G is a cycle of length n = |V|.

#Hamiltonian-Cycles

#Hamiltonian-Cycles

Input: A graph G = (V, E)

Output: The number of Hamiltonian cycles of G

This graph has 2 Hamiltonian cycles.

IE for #Hamiltonian-Cycles

• U: the set of closed n-walks starting at vertex 1

• $A_v \subseteq U$: walks in U that visit vertex $v \in V$

• \Rightarrow number of Hamiltonian cycles is $|\bigcap_{v \in V} A_v|$

• To use the IE-theorem, we need to compute $|\bigcap_{v\in S} \overline{A_v}|$, the number of walks from U in the graph G-S.

A simpler problem

#Closed n-Walks

Input: An integer n, and a graph G = (V, E) on $\leq n$ vertices Output: The number of closed n-walks in G starting at vertex 1

Dynamic programming

• T[d,v]: number of d-walks starting at vertex 1 and ending at vertex v

• Base cases: T[0,1] = 1 and T[0,v] = 0 for all $v \in V \setminus \{1\}$

• DP recurrence: $T[d, v] = \sum_{uv \in E} T[d-1, u]$

• Table T is filled by increasing d

• Return T[n,1] in $O(n^3)$ time

Wrapping up

• Recall:

U: set of closed n-walks starting at vertex 1 A_v : set of closed n-walks that start at vertex 1 and visit vertex v

• By the IE-theorem, the number of Hamiltonian cycles is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$

• We have seen that $\left|\bigcap_{v\in S}\overline{A_v}\right|$ can be computed in $O(n^3)$ time.

• So, $\sum_{S\subset V} (-1)^{|S|} \left| \bigcap_{v\in S} \overline{A_v} \right|$ can be evaluated in $O(2^n n^3)$ time

Theorem 2. #Hamiltonian-Cycles can be solved in $O(2^n n^3)$ time and polynomial space, where n = |V|.

3 Coloring

A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k

Question: Does G have a k-coloring?

Exercise

- Suppose A is an algorithm solving Coloring in O(f(n)) time, n = |V|, where f is non-decreasing.
- Design a $O^*(f(n))$ time algorithm B, which, for an input graph G, finds a coloring of G with a minimum number of colors.

Solution (sketch)

- 1. First, compute the smallest number of colors needed to color G
 - For k = 1 to n, execute algorithm A for the instance (G, k), and stop when encountering the first YES-instance.
 - (Alternatively, use binary search to find the smallest k for which (G, k) is a YES-instance)
- 2. Now, compute an actual k-coloring using the following ideas
 - Select two non-adjacent vertices u and v, and check whether G as a k-coloring where u and v receive distinct colors.

This can be done by adding an edge between u and v, and using algorithm A.

If there is such a k-coloring, add the edge uv, and continue with two other distinct vertices.

If not, then u and v must receive the same color, and we merge them into a single vertex, and continue by picking two new non-adjacent vertices

 \bullet A complete graph on n vertices needs n colors.

IE formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring $\Leftrightarrow G$ has independent sets I_1, \ldots, I_k such that $\bigcup_{i=1}^k I_i = V$.

- U: set of tuples (I_1, \ldots, I_k) , where each $I_i, i \in \{1, \ldots, k\}$, is an independent set
- $A_v = \{(I_1, \dots, I_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} I_i\}$
- Note: $\left|\bigcap_{v\in V}A_v\right|\neq 0 \Leftrightarrow G$ has a k-coloring
- To use the IE-theorem, we need to compute

$$\left| \bigcap_{v \in S} \overline{A_v} \right| = \left| \{ (I_1, \dots, I_k) \in U : I_1, \dots, I_k \subseteq V \setminus S \} \right|$$
$$= s(V \setminus S)^k.$$

where s(X) is the number of independent sets in G[X]

A simpler problem

#IS OF INDUCED SUBGRAPHS

Input: A graph G = (V, E)

Output: s(X), the number of independent sets of G[X], for each $X \subseteq V$

Dynamic Programming

• s(X): the number of independent sets of G[X]

• Base case: $s(\emptyset) = 1$

• DP recurrence: $s(X) = s(X \setminus N_G[v]) + s(X \setminus \{v\})$, where $v \in X$

 \bullet Table s filled by increasing cardinalities of X

• Output s(X) for each $X \subseteq V$ in time $O^*(2^n)$

Wrapping up

Now, evaluate

$$\left|\bigcap_{v\in V} A_v\right| = \sum_{S\subseteq V} (-1)^{|S|} \left|\bigcap_{v\in S} \overline{A_v}\right| = \sum_{S\subseteq V} (-1)^{|S|} s(V\setminus S)^k,$$

in $O^*(2^n)$ time. G has a k-coloring iff $\left|\bigcap_{v\in V} A_v\right| > 0$.

Theorem 3 ([Bjørklund & Husfeldt '06], [Koivisto '06]). Coloring can be solved in $O^*(2^n)$ time (and space).

Corollary 4. For a given graph G, a coloring with a minimum number of colors can be found in $O^*(2^n)$ time (and space).

... polynomial space

Using an algorithm by [Wahlström 2008], counting all independent sets in a graph on n vertices in $O(1.2377^n)$ time, we obtain a polynomial-space algorithm for COLORING with running time

$$\sum_{S \subseteq V} O(1.2377^{n-|S|}) = \sum_{s=0}^n \binom{n}{s} O(1.2377^{n-s}) = O(2.2377^n).$$

Here, we used the Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Theorem 5. Coloring can be solved in $O(2.23772^n)$ time and polynomial space.

4 Counting Set Covers

#Set Covers

Input: A finite ground set V of elements, a collection H of subsets of V, and an integer k

Output: The number of ways to choose a k-tuple of sets (S_1, \ldots, S_k) with $S_i \in H$, $i \in \{1, \ldots, k\}$, such that

 $\bigcup_{i=1}^k S_i = V.$

This instance has $1 \cdot 3! = 6$ covers with 3 sets and $3 \cdot 4! = 72$ covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be enumerated in $O^*(2^n)$ time and space.

Algorithm for Counting Set Covers

- U: set of k-tuples (S_1, \ldots, S_k) , where $S_i \in H$, $i \in \{1, \ldots, k\}$,
- $A_v = \{(S_1, \dots, S_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} S_i\},\$
- \bullet the number of covers with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$
$$= \sum_{S \subseteq V} (-1)^{|S|} s(V \setminus S)^k,$$

where s(X) is the number of sets in H that are subsets of X.

Compute s(X)

For each $X \subseteq V$, compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

- Arbitrarily order $V = \{v_1, v_2, \dots, v_n\}$
- $g[X, i] = |\{S \in H : (X \cap \{v_i, \dots, v_n\}) \subseteq S \subseteq X\}|$
- Note: g[X, n+1] = s(X)
- Base case: $g[X,1] = \begin{cases} 1 & \text{if } X \in H \\ 0 & \text{otherwise.} \end{cases}$
- DP recurrence: $g[X,i] = \begin{cases} g[X,i-1] & \text{if } v_{i-1} \notin X \\ g[X \setminus \{v_{i-1}\},i-1] + g[X,i-1] & \text{otherwise.} \end{cases}$
- Table filled by increasing i

Theorem 6. #Set Covers can be solved in $O^*(2^n)$ time and space, where n = |V|.

5 Counting Set Partitions

#Ordered Set Partitions

Input: A finite ground set V of elements, a collection H of subsets of V, and an integer k

Output: The number of ways to choose a k-tuple of pairwise disjoint sets (S_1, \ldots, S_k) with $S_i \in H$, $i \in \{1, \ldots, k\}$, such that $\bigcup_{i=1}^k S_i = V$. $(Now, S_i \cap S_j = \emptyset, if i \neq j.)$

This instance has $1 \cdot 3! = 6$ ordered partitions with 3 sets.

IE formulation

Lemma 7. The number of ordered k-partitions of a set system (V, H) is

$$\sum_{S\subseteq V} (-1)^{|S|} a_k(V\setminus S),$$

where $a_k(X)$ denotes the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Proof (Sketch). • U: set of tuples (S_1, \ldots, S_k) , where $S_i \in H$, $i \in \{1, \ldots, k\}$, and $\sum_{i=1}^k |S_i| = |V|$

- $A_v = \{(S_1, \dots, S_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} S_i\},\$
- \bullet the number of ordered partitions with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right| = \sum_{S \subseteq V} (-1)^{|S|} a_k(V \setminus S).$$

IE evaluation

For each $X \subseteq V$, we need to compute $a_k(X)$, the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Dynamic Programming

- (1) Compute $s[X, i] = |\{Y \in H : Y \subseteq X \text{ and } |Y| = i\}| \text{ for each } X \subseteq V \text{ and each } i \in \{0, \dots, n\}:$
 - The entries $s[\cdot, i]$ are computed the same ways as $s[\cdot]$ in the previous section, but keep only the sets in H of size i.
- (2) $A[\ell, m, X]$: number of tuples (S_1, \ldots, S_ℓ) with $S_i \in H$, $S_i \subseteq X$, and $\sum_{i=1}^{\ell} |S_i| = m$.
 - Base case: A[1, m, X] = s[X, m]
 - DP recurrence: $A[\ell,m,X] = \sum_{i=1}^{m-1} s[X,i] \cdot A[\ell-1,m-i,X]$
 - Table filled by increasing ℓ
 - Note: $a_k(X) = A[k, |V|, X]$

Algorithm for Counting Set Partitions

Theorem 8. #Ordered Set Partitions can be solved in $O^*(2^n)$ time and space.

Corollary 9. There is an algorithm computing the number of k-colorings of an input graph on n vertices in $O^*(2^n)$ time and space.

Covering and partitioning in polynomial space

Theorem 10. The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and

- 1. $O^*(2^n|H|)$ time, assuming that H can be enumerated in $O^*(|H|)$ time and polynomial space
- 2. $O^*(3^n)$ time, assuming membership in H can be decided in polynomial time, and
- 3. $\sum_{j=0}^{n} {n \choose j} T_H(j)$ time, assuming there is a $T_H(j)$ time and polynomial space algorithm to count for any $W \subseteq V$ with |W| = j the number of sets $S \in H$ satisfying $S \cap W = \emptyset$.

Exercise

A graph G = (V, E) is bipartite if V can be partitioned into two independent sets. A matching in a graph G = (V, E) is a set of edges $M \subseteq E$ such that no two edges of M have an end-point in common. The matching M in G is perfect if every vertex of G is contained in an edge of M.

#BIPARTITE PERFECT MATCHINGS

Input: Bipartite graph G = (V, E)

Output: The number of perfect matchings in G.

- 1. Design an algorithm with running time $O^*\left(\left(\frac{n}{2}\right)!\right)$, where n=|V|.
- 2. Design a polynomial-space $O^*(2^{n/2})$ -time inclusion-exclusion algorithm.

Solution (sketch)

1. Let (X,Y) be a bipartition of V such that X and Y are independent sets If $|X| \neq |Y|$, then return 0. Denote $X = \{x_1, \ldots, x_{n/2}\}$ and $Y = \{y_1, \ldots, y_{n/2}\}$. For each permutation $\pi = (y_{\pi(1)}, \ldots, y_{\pi(n/2)})$ of Y,

$$\{x_i y_{\pi(i)} : 1 \le i \le n/2\}$$

is a perfect matching iff $x_i y_{\pi(i)} \in E$ for each $i \in \{1, \dots, n/2\}$.

2. U: contains each set of n/2 edges $\{e_1, \ldots, e_{n/2}\}$ such that $x_i \in e_i$. For $v \in Y$, $A_v = \{S \in U : v \in \bigcup S\}$. The number of perfect matchings is

$$\left| \bigcap_{v \in Y} A_v \right| = \sum_{S \subseteq Y} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$
$$= \sum_{S \subseteq Y} (-1)^{|S|} \prod_{i=1}^{n/2} |N(x_i) \setminus S|.$$

6 Further Reading

- Chapter 4, *Inclusion-Exclusion* in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion. Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP 2011): 42-59, 2011.

Advanced Reading

• Chapter 7, Subset Convolution in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.