4. Inclusion-Exclusion
COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2015

Contents

|1 The Principle of Inclusion-Exclusion|

2 Counting Hamiltonian Cycles|

3 Coloring]

4 Counting Set Covers|

[Counting Set Partitions|

6 Further Reading]

1 The Principle of Inclusion-Exclusion

... for 3 sets

[AUBUC| =|A|+|B|+|C| = |[AnB|—|ANC|—|BNnC|+|ANnBNC]|
AUBUCI= Y (—1)|X|+1-‘ﬂX’

XC{A,B,C'}

A C

. intersection version

IANBNC|=|U|-[A] = |B| = |C|+|[AnB|+|[AnC|+|BNnC| - |[AnBnNC)|
AnBaCl= 3 (-l ‘ﬂf‘

XC{A,B,C}

Inclusion-Exclusion Principle — intersection version

Theorem 1 (IE-theorem — intersection version). Let U = Ag be a finite set, and let Aq,..., A CU.

N«

icJ

)

ﬂ A = Z (-
¥

ie{l,....k JC{1,...,k}

where A; = U\ A; and ;e = U.
Proof sketch. e Anelement e € (\;cqy ;A is counted on the right only for J = 0.

e An element e ¢ (\;c(; _;y Ai is counted on the right for all J C I, where I is the set of indices i such that
(& ¢ Az

— counted negatively for each odd-sized J C I, and positively for each even-sized J C I

— a non-empty set has as many even-sized subsets as odd-sized subsets

2 Counting Hamiltonian Cycles
Walks and cycles

e A walk of length k in a graph G = (V, E) (short, a k-walk) is a sequence of vertices vy, v1, ..., v such that
v;U;+1 € E for each i € {0,...,k—1}.

e A walk (vg,v1,...,v;) is closed if vy = vg.
e A cycle is a 2-regular subgraph of G.

e A Hamiltonian cycle of G is a cycle of length n = |V|.

e
(a,d,c,b,d,e)

¢ d (a,d,c,b,d,e,c, a)
(a,d,c,b,a)
(a,d,e,c,b,a)

a b

#Hamiltonian-Cycles

#HAMILTONIAN-CYCLES
Input: A graph G = (V, E)
Output: The number of Hamiltonian cycles of G

This graph has 2 Hamiltonian cycles.

IE for #Hamiltonian-Cycles
e U: the set of closed n-walks starting at vertex 1
o A, CU: walks in U that visit vertex v € V

e = number of Hamiltonian cycles is | (), o1 4v|

veV

e To use the IE-theorem, we need to compute | (), . g A, |, the number of walks from U in the graph G — S.

veES

A simpler problem

#CLOSED n-WALKS
Input: An integer n, and a graph G = (V, E) on < n vertices
Output: The number of closed n-walks in G starting at vertex 1

Dynamic programming
e T[d,v]: number of d-walks starting at vertex 1 and ending at vertex v
e Base cases: T[0,1] =1 and T[0,v] =0 for all v € V'\ {1}
e DP recurrence: T'[d,v] =3, cpT[d—1,u]
e Table T is filled by increasing d

Return T[n, 1] in O(n®) time

Wrapping up

e Recall:
U: set of closed n-walks starting at vertex 1
A,: set of closed n-walks that start at vertex 1 and visit vertex v

e By the IE-theorem, the number of Hamiltonian cycles is

n Av = Z(il)‘s‘

veV SCvV

N

veES

e We have seen that |, g Av| can be computed in O(n?) time.
e So, ng/(—l)|5| ’ﬂves A,| can be evaluated in O(2"n?) time

Theorem 2. #HAMILTONIAN-CYCLES can be solved in O(2"n?) time and polynomial space, where n = |V|.

3 Coloring

A k-coloring of a graph G = (V, E) is a function f : V — {1,2, ..., k} assigning colors to V such that no two adjacent
vertices receive the same color.

COLORING
Input: Graph G, integer k
Question: Does G have a k-coloring?

~ @
RS
>

Exercise

e Suppose A is an algorithm solving COLORING in O(f(n)) time, n = |V, where f is non-decreasing.

e Design a O*(f(n)) time algorithm B, which, for an input graph G, finds a coloring of G with a minimum
number of colors.

Solution (sketch)
1. First, compute the smallest number of colors needed to color G

e For k = 1 to n, execute algorithm A for the instance (G, k), and stop when encountering the first
YES-instance.

e (Alternatively, use binary search to find the smallest &k for which (G, k) is a YES-instance)
2. Now, compute an actual k-coloring using the following ideas

e Select two non-adjacent vertices u and v, and check whether G as a k-coloring where u and v receive
distinct colors.
This can be done by adding an edge between u and v, and using algorithm A.
If there is such a k-coloring, add the edge uv, and continue with two other distinct vertices.
If not, then u and v must receive the same color, and we merge them into a single vertex, and continue
by picking two new non-adjacent vertices

e A complete graph on n vertices needs n colors.

IE formulation

Observation: partitioning vs. covering
G = (V, E) has a k-coloring < G has independent sets I, ..., I} such that Ufil L, =V.

e U: set of tuples (I1,...,I;), where each I;, i € {1,...,k}, is an independent set
.AU:{(Ili"'7Ik3)EU:Ueuie{l k}Iz}

e Note: |V ey Av| # 0 < G has a k-coloring
e To use the IE-theorem, we need to compute

N4

veS

= {(I,....)€U : I,....I, CV\ S}|

=s(V\ 9",
where s(X) is the number of independent sets in G[X]

A simpler problem

#IS OoF INDUCED SUBGRAPHS
Input: A graph G = (V, E)
Output: s(X), the number of independent sets of G[X], for each X CV

Dynamic Programming

s(X): the number of independent sets of G[X]

Base case: s(0) =1

DP recurrence: s(X) = s(X \ Ng[v]) + s(X \ {v}), where v € X

Table s filled by increasing cardinalities of X

Output s(X) for each X C V in time O*(2")

Wrapping up
Now, evaluate

A=Y (D4

veV scv veS Scv
in O*(2") time. G has a k-coloring iff |,y Au| > 0.
Theorem 3 ([Bjorklund & Husfeldt 06], [Koivisto '06]). COLORING can be solved in O*(2™) time (and space).

Corollary 4. For a given graph G, a coloring with a minimum number of colors can be found in O*(2") time (and
space).

... polynomial space
Using an algorithm by [Wahlstrom 2008], counting all independent sets in a graph on n vertices in O(1.2377™) time,
we obtain a polynomial-space algorithm for COLORING with running time

n

d o2ty =3 <Z>0(1.2377“) = 0(2.2377").

scv s=0
Here, we used the Binomial Theorem: (z +y)" = >";'_, (})z" "y".

Theorem 5. COLORING can be solved in O(2.23772"™) time and polynomial space.

4 Counting Set Covers

#SET COVERS

Input: A finite ground set V of elements, a collection H of subsets of V', and an integer k
Output: The number of ways to choose a k-tuple of sets (S1,...,S;) with S; € H, i € {1,...,k}, such that

U, s =v.
Jie

This instance has 1 - 3! = 6 covers with 3 sets and 3 - 4! = 72 covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be enumerated in O*(2") time and space.

Algorithm for Counting Set Covers
e U: set of k-tuples (Sy,...,Sk), where S; € H, i € {1,...,k},
[] A'U = {(Sl, ey Sk) S U TV E Uie{l,...,k}} Sz},

e the number of covers with k sets is

N A=Y 08 N4

veV scv veES
= (-Dls(\ 9)F,
sCcv

where s(X) is the number of sets in H that are subsets of X.

Compute s(X)
For each X C V', compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming
e Arbitrarily order V' = {vy,va,...,v,}
o g[X,i]={SeH:(XNn{vy...,un}) TS C X}
e Note: g[X,n+ 1] = s(X)

1 fXeH

0 otherwise.

Base case: g[X,1] = {

g[X,’L—l] if’Ui_l ¢X
g X \{vi—1},i— 1]+ g[X,i—1] otherwise.

DP recurrence: g[X,i] = {

Table filled by increasing ¢

Theorem 6. #SET COVERS can be solved in O*(2"™) time and space, where n = |V|.

5 Counting Set Partitions

#ORDERED SET PARTITIONS
Input: A finite ground set V of elements, a collection H of subsets of V', and an integer k
Output: The number of ways to choose a k-tuple of pairwise disjoint sets (S1,...,S;) with S; € H, i €
{1,...,k}, such that Ule S, =V.
(NO’LU, 57 ﬂSj - @, ’LfZ 7&_])

This instance has 1 - 3! = 6 ordered partitions with 3 sets.

IE formulation

Lemma 7. The number of ordered k-partitions of a set system (V, H) is

Do (=D Elag(V\S),

scv
where ay(X) denotes the number of k-tuples of sets Si,...,Sr C X with Zle |S:| = |V].
Proof (Sketch). e U: set of tuples (S1,...,Sk), where S; € H, i € {1,...,k}, and Ele |Si| = |V|

o Ay ={(S1,.--, %) €U : veUicq, 4y Si}

e the number of ordered partitions with k sets is

m Av = Z(_l)‘s‘

veV scv

N4

veS

= 3 (1)Fla(v\ 9).

scv

IE evaluation
For each X C V, we need to compute ay(X), the number of k-tuples of sets Sy,...,S; C X with Zle [Si| = V]

Dynamic Programming
(1) Compute s[X,i] ={Y € H:Y C X and |Y]| =4}| for each X C V and each i € {0,...,n}:

e The entries s[-,i] are computed the same ways as s|-| in the previous section, but keep only the sets in H of
size 1.

(2) Al¢,m, X]: number of tuples (S1,...,S¢) with S; € H, S; C X, and Zle |S;| = m.
e Base case: A[l,m, X]| = s[X,m]
e DP recurrence: A[¢,m, X] =" " s[X,d]- A[¢ —1,m — i, X]
e Table filled by increasing ¢
e Note: ai(X) = Alk, |V], X]

Algorithm for Counting Set Partitions
Theorem 8. #ORDERED SET PARTITIONS can be solved in O*(2™) time and space.

Corollary 9. There is an algorithm computing the number of k-colorings of an input graph on n vertices in O*(2™)
time and space.

Covering and partitioning in polynomial space

Theorem 10. The number of covers with k sets and the number of ordered partitions with k sets of a set system
(V, H) can be computed in polynomial space and

1. O*(2"|H|) time, assuming that H can be enumerated in O*(|H|) time and polynomial space
2. O*(3™) time, assuming membership in H can be decided in polynomial time, and

3. Z?:O (?)TH (j) time, assuming there is a Ty (j) time and polynomial space algorithm to count for any W CV
with |W| = j the number of sets S € H satisfying SNW = {.

Exercise

A graph G = (V, E) is bipartite if V' can be partitioned into two independent sets. A matching in a graph G = (V, E)
is a set of edges M C FE such that no two edges of M have an end-point in common. The matching M in G is
perfect if every vertex of G is contained in an edge of M.

#BIPARTITE PERFECT MATCHINGS
Input: Bipartite graph G = (V, E)
Output: The number of perfect matchings in G.

1. Design an algorithm with running time O* ((%)!), where n = |V|.

2. Design a polynomial-space O*(Q”/ 2)-time inclusion-exclusion algorithm.

Solution (sketch)

1. Let (X,Y) be a bipartition of V such that X and Y are independent sets If | X| # |V, then return 0. Denote
X ={w1,...,2y/2} and Y = {y1,...,ypn/2}. For each permutation 7 = (yr(1),...,Yx(n/2)) of Y,

{#iyr@y 1 1 <0 <n/2}
is a perfect matching iff z;y.;) € E for each i € {1,...,n/2}.

2. U: contains each set of n/2 edges {e1,...,e,/2} such that z; € ;. ForveY, A, ={ScU:velJS}. The
number of perfect matchings is

N A=Y N4

veY SCY veES
n/2
= ST (=0T IN)\ SI-
SCY i=1

6 Further Reading

e Chapter 4, Inclusion-Exclusion in Fedor V. Fomin and Dieter Kratsch. FExact Exponential Algorithms.
Springer, 2010.

e Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion. Proceedings of the 38th International
Colloquium on Automata, Languages and Programming (ICALP 2011): 42-59, 2011.

Advanced Reading

e Chapter 7, Subset Convolution in Fedor V. Fomin and Dieter Kratsch. FExact Exponential Algorithms.
Springer, 2010.

	The Principle of Inclusion-Exclusion
	Counting Hamiltonian Cycles
	Coloring
	Counting Set Covers
	Counting Set Partitions
	Further Reading

