4. Inclusion-Exclusion
COMP6741: Parameterized and Exact Computation
Serge Gaspers
Semester 2, 2015

Contents
1 The Principle of Inclusion-Exclusion 1
2 Counting Hamiltonian Cycles 2
3 Coloring 4
4 Counting Set Covers 5
5 Counting Set Partitions 6
6 Further Reading 8

1 The Principle of Inclusion-Exclusion
... for 3 sets

\[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \]
\[|A \cup B \cup C| = \sum_{X \subseteq \{A,B,C\}} (-1)^{|X|+1} \cdot |\bigcap X| \]

\[|A \cap B \cap C| = |U| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C| \]
\[|A \cap B \cap C| = \sum_{X \subseteq \{A,B,C\}} (-1)^{|X|} \cdot |\bigcap X| \]
Inclusion-Exclusion Principle – intersection version

Theorem 1 (IE-theorem – intersection version). Let $U = A_0$ be a finite set, and let $A_1, \ldots, A_k \subseteq U$.

\[\left| \bigcap_{i \in \{1, \ldots, k\}} A_i \right| = \sum_{J \subseteq \{1, \ldots, k\}} (-1)^{|J|} \left| \bigcap_{i \in J} A_i \right|, \]

where $\overline{A}_i = U \setminus A_i$ and $\bigcap_{i \in \emptyset} = U$.

Proof sketch.

- An element $e \in \bigcap_{i \in \{1, \ldots, k\}} A_i$ is counted on the right only for $J = \emptyset$.
- An element $e \notin \bigcap_{i \in \{1, \ldots, k\}} A_i$ is counted on the right for all $J \subseteq I$, where I is the set of indices i such that $e \notin A_i$.
 - counted negatively for each odd-sized $J \subseteq I$, and positively for each even-sized $J \subseteq I$
 - a non-empty set has as many even-sized subsets as odd-sized subsets

\[\square \]

2 Counting Hamiltonian Cycles

Walks and cycles

- A walk of length k in a graph $G = (V, E)$ (short, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i \in \{0, \ldots, k-1\}$.
- A walk (v_0, v_1, \ldots, v_k) is closed if $v_0 = v_k$.
- A cycle is a 2-regular subgraph of G.
- A Hamiltonian cycle of G is a cycle of length $n = |V|$.
Hamiltonian-Cycles

Input:
A graph $G = (V, E)$

Output:
The number of Hamiltonian cycles of G

This graph has 2 Hamiltonian cycles.

IE for #Hamiltonian-Cycles
- U: the set of closed n-walks starting at vertex 1
- $A_v \subseteq U$: walks in U that visit vertex $v \in V$
- \Rightarrow number of Hamiltonian cycles is $|\bigcap_{v \in V} A_v|$
- To use the IE-theorem, we need to compute $|\bigcap_{v \in S} A_v|$, the number of walks from U in the graph $G - S$.

A simpler problem

Input:
An integer n, and a graph $G = (V, E)$ on $\leq n$ vertices

Output:
The number of closed n-walks in G starting at vertex 1

Dynamic programming
- $T[d, v]$: number of d-walks starting at vertex 1 and ending at vertex v
- Base cases: $T[0, 1] = 1$ and $T[0, v] = 0$ for all $v \in V \setminus \{1\}$
- DP recurrence: $T[d, v] = \sum_{uv \in E} T[d - 1, u]$
- Table T is filled by increasing d
- Return $T[n, 1]$ in $O(n^3)$ time

Wrapping up
- Recall:
 - U: set of closed n-walks starting at vertex 1
 - A_v: set of closed n-walks that start at vertex 1 and visit vertex v
- By the IE-theorem, the number of Hamiltonian cycles is
 $$ |\bigcap_{v \in V} A_v| = \sum_{S \subseteq V} (-1)^{|S|} |\bigcap_{v \in S} \overline{A_v}| $$
- We have seen that $|\bigcap_{v \in S} \overline{A_v}|$ can be computed in $O(n^3)$ time.
- So, $\sum_{S \subseteq V} (-1)^{|S|} |\bigcap_{v \in S} \overline{A_v}|$ can be evaluated in $O(2^n n^3)$ time

Theorem 2
Hamiltonian-Cycles can be solved in $O(2^n n^3)$ time and polynomial space, where $n = |V|$.

3
3 Coloring

A \textit{k-coloring} of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Input: Graph G, integer k

Question: Does G have a k-coloring?

Solution (sketch)

1. First, compute the smallest number of colors needed to color G
 - For $k = 1$ to n, execute algorithm A for the instance (G, k), and stop when encountering the first \textit{Yes}-instance.
 - (Alternatively, use binary search to find the smallest k for which (G, k) is a \textit{Yes}-instance)

2. Now, compute an actual k-coloring using the following ideas
 - Select two non-adjacent vertices u and v, and check whether G as a k-coloring where u and v receive distinct colors.
 This can be done by adding an edge between u and v, and using algorithm A.
 If there is such a k-coloring, add the edge uv, and continue with two other distinct vertices.
 If not, then u and v must receive the same color, and we merge them into a single vertex, and continue by picking two new non-adjacent vertices
 - A complete graph on n vertices needs n colors.

IE formulation

Observation: partitioning vs. covering

$G = (V, E)$ has a k-coloring \iff G has independent sets I_1, \ldots, I_k such that $\bigcup_{i=1}^{k} I_i = V$.

- U: set of tuples (I_1, \ldots, I_k), where each I_i, $i \in \{1, \ldots, k\}$, is an independent set
- $A_v = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{i \in \{1, \ldots, k\}} I_i\}$
- Note: $|\bigcap_{v \in V} A_v| \neq 0 \iff G$ has a k-coloring
- To use the IE-theorem, we need to compute

\[
|\bigcap_{v \in S} A_v| = |\{(I_1, \ldots, I_k) \in U : I_1, \ldots, I_k \subseteq V \setminus S\}|
= s(V \setminus S)^k,
\]

where $s(X)$ is the number of independent sets in $G[X]$.

![Diagram](image-url)
A simpler problem

<table>
<thead>
<tr>
<th>#IS of Induced Subgraphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph $G = (V,E)$</td>
</tr>
<tr>
<td>Output: $s(X)$, the number of independent sets of $G[X]$, for each $X \subseteq V$</td>
</tr>
</tbody>
</table>

Dynamic Programming

- $s(X)$: the number of independent sets of $G[X]
- Base case: $s(\emptyset) = 1$
- DP recurrence: $s(X) = s(X \setminus N_G[v]) + s(X \setminus \{v\})$, where $v \in X$
- Table s filled by increasing cardinalities of X
- Output $s(X)$ for each $X \subseteq V$ in time $O^*(2^n)$

Wrapping up

Now, evaluate

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} s(V \setminus S)^k,$$

in $O^*(2^n)$ time. G has a k-coloring iff $\left| \bigcap_{v \in V} A_v \right| > 0$.

Theorem 3 ([Bjørklund & Husfeldt '06], [Koivisto '06]). COLORING can be solved in $O^*(2^n)$ time (and space).

Corollary 4. For a given graph G, a coloring with a minimum number of colors can be found in $O^*(2^n)$ time (and space).

... polynomial space

Using an algorithm by [Wahlström 2008], counting all independent sets in a graph on n vertices in $O(1.2377^n)$ time, we obtain a polynomial-space algorithm for COLORING with running time

$$\sum_{S \subseteq V} O(1.2377^n - |S|) = \sum_{s=0}^{n} \binom{n}{s} O(1.2377^n - s) = O(2.2377^n).$$

Here, we used the Binomial Theorem: $(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$.

Theorem 5. COLORING can be solved in $O(2.23772^n)$ time and polynomial space.

4 Counting Set Covers

<table>
<thead>
<tr>
<th>#Set Covers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A finite ground set V of elements, a collection H of subsets of V, and an integer k</td>
</tr>
<tr>
<td>Output: The number of ways to choose a k-tuple of sets (S_1, \ldots, S_k) with $S_i \in H$, $i \in {1, \ldots, k}$, such that $\bigcup_{i=1}^{k} S_i = V$.</td>
</tr>
</tbody>
</table>

This instance has $1 \cdot 3! = 6$ covers with 3 sets and $3 \cdot 4! = 72$ covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be enumerated in $O^*(2^n)$ time and space.
Algorithm for Counting Set Covers

- U: set of k-tuples (S_1, \ldots, S_k), where $S_i \in H$, $i \in \{1, \ldots, k\}$,
- $A_v = \{(S_1, \ldots, S_k) \in U : v \in \bigcup_{i\in\{1,\ldots,k\}} S_i\}$,
- the number of covers with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} s(V \setminus S)^k,$$

where $s(X)$ is the number of sets in H that are subsets of X.

Compute $s(X)$

For each $X \subseteq V$, compute $s(X)$, the number of sets in H that are subsets of X.

Dynamic Programming

- Arbitrarily order $V = \{v_1, v_2, \ldots, v_n\}$
- $g[X, i] = |\{S \in H : (X \cap \{v_i, \ldots, v_n\}) \subseteq S \subseteq X\}|$
- Note: $g[X, n + 1] = s(X)$
- Base case: $g[X, 1] = \begin{cases} 1 & \text{if } X \in H \\ 0 & \text{otherwise.} \end{cases}$
- DP recurrence: $g[X, i] = \begin{cases} g[X, i - 1] & \text{if } v_{i-1} \notin X \\ g[X \setminus \{v_{i-1}\}, i - 1] + g[X, i - 1] & \text{otherwise.} \end{cases}$
- Table filled by increasing i

Theorem 6. #Set Covers can be solved in $O^*(2^n)$ time and space, where $n = |V|$.

Counting Set Partitions

#Ordered Set Partitions

| Input: | A finite ground set V of elements, a collection H of subsets of V, and an integer k |
| Output: | The number of ways to choose a k-tuple of pairwise disjoint sets (S_1, \ldots, S_k) with $S_i \in H$, $i \in \{1, \ldots, k\}$, such that $\bigcup_{i=1}^k S_i = V$. (Now, $S_i \cap S_j = \emptyset$, if $i \neq j$.) |

This instance has $1 \cdot 3! = 6$ ordered partitions with 3 sets.
IE formulation

Lemma 7. The number of ordered k-partitions of a set system (V,H) is

$$\sum_{S \subseteq V} (-1)^{|S|} a_k(V \setminus S),$$

where $a_k(X)$ denotes the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Proof (Sketch).

- U: set of tuples (S_1, \ldots, S_k), where $S_i \in H$, $i \in \{1, \ldots, k\}$, and $\sum_{i=1}^k |S_i| = |V|$.
- $A_v = \{(S_1, \ldots, S_k) \in U : v \in \bigcup_{i \in \{1, \ldots, k\}} S_i\}$.
- The number of ordered partitions with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} a_k(V \setminus S).$$

IE evaluation

For each $X \subseteq V$, we need to compute $a_k(X)$, the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Dynamic Programming

1. Compute $s[X,i] = |\{Y \in H : Y \subseteq X \text{ and } |Y| = i\}|$ for each $X \subseteq V$ and each $i \in \{0, \ldots, n\}$:
 - The entries $s[\cdot, i]$ are computed the same ways as $s[\cdot]$ in the previous section, but keep only the sets in H of size i.
2. $A[\ell, m, X]$: number of tuples (S_1, \ldots, S_ℓ) with $S_i \in H$, $S_i \subseteq X$, and $\sum_{i=1}^\ell |S_i| = m$.
 - Base case: $A[1, m, X] = s[X, m]$
 - DP recurrence: $A[\ell, m, X] = \sum_{i=1}^{m-1} s[X, i] \cdot A[\ell - 1, m - i, X]$
 - Table filled by increasing ℓ
 - Note: $a_k(X) = A[k, |V|, X]$

Algorithm for Counting Set Partitions

Theorem 8. $\#\text{ORDERED SET PARTITIONS}$ can be solved in $O^*(2^n)$ time and space.

Corollary 9. There is an algorithm computing the number of k-colorings of an input graph on n vertices in $O^*(2^n)$ time and space.

Covering and partitioning in polynomial space

Theorem 10. The number of covers with k sets and the number of ordered partitions with k sets of a set system (V,H) can be computed in polynomial space and

1. $O^*(2^{n|H|})$ time, assuming that H can be enumerated in $O^*(|H|)$ time and polynomial space
2. $O^*(3^n)$ time, assuming membership in H can be decided in polynomial time, and
3. $\sum_{j=0}^n \binom{n}{j} T_H(j)$ time, assuming there is a $T_H(j)$ time and polynomial space algorithm to count for any $W \subseteq V$ with $|W| = j$ the number of sets $S \in H$ satisfying $S \cap W = \emptyset$.

IE formulation

Lemma 7. The number of ordered k-partitions of a set system (V,H) is

$$\sum_{S \subseteq V} (-1)^{|S|} a_k(V \setminus S),$$

where $a_k(X)$ denotes the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Proof (Sketch).

- U: set of tuples (S_1, \ldots, S_k), where $S_i \in H$, $i \in \{1, \ldots, k\}$, and $\sum_{i=1}^k |S_i| = |V|
- $A_v = \{(S_1, \ldots, S_k) \in U : v \in \bigcup_{i \in \{1, \ldots, k\}} S_i\}$
- The number of ordered partitions with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} a_k(V \setminus S).$$

IE evaluation

For each $X \subseteq V$, we need to compute $a_k(X)$, the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Dynamic Programming

1. Compute $s[X,i] = |\{Y \in H : Y \subseteq X \text{ and } |Y| = i\}|$ for each $X \subseteq V$ and each $i \in \{0, \ldots, n\}$:
 - The entries $s[\cdot, i]$ are computed the same ways as $s[\cdot]$ in the previous section, but keep only the sets in H of size i.
2. $A[\ell, m, X]$: number of tuples (S_1, \ldots, S_ℓ) with $S_i \in H$, $S_i \subseteq X$, and $\sum_{i=1}^\ell |S_i| = m$.
 - Base case: $A[1, m, X] = s[X, m]$
 - DP recurrence: $A[\ell, m, X] = \sum_{i=1}^{m-1} s[X, i] \cdot A[\ell - 1, m - i, X]$
 - Table filled by increasing ℓ
 - Note: $a_k(X) = A[k, |V|, X]$

Algorithm for Counting Set Partitions

Theorem 8. $\#\text{ORDERED SET PARTITIONS}$ can be solved in $O^*(2^n)$ time and space.

Corollary 9. There is an algorithm computing the number of k-colorings of an input graph on n vertices in $O^*(2^n)$ time and space.

Covering and partitioning in polynomial space

Theorem 10. The number of covers with k sets and the number of ordered partitions with k sets of a set system (V,H) can be computed in polynomial space and

1. $O^*(2^{n|H|})$ time, assuming that H can be enumerated in $O^*(|H|)$ time and polynomial space
2. $O^*(3^n)$ time, assuming membership in H can be decided in polynomial time, and
3. $\sum_{j=0}^n \binom{n}{j} T_H(j)$ time, assuming there is a $T_H(j)$ time and polynomial space algorithm to count for any $W \subseteq V$ with $|W| = j$ the number of sets $S \in H$ satisfying $S \cap W = \emptyset$.

7
Exercise
A graph $G = (V,E)$ is bipartite if V can be partitioned into two independent sets. A matching in a graph $G = (V,E)$ is a set of edges $M \subseteq E$ such that no two edges of M have an end-point in common. The matching M in G is perfect if every vertex of G is contained in an edge of M.

<table>
<thead>
<tr>
<th>#Bipartite Perfect Matchings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Bipartite graph $G = (V,E)$</td>
</tr>
<tr>
<td>Output: The number of perfect matchings in G.</td>
</tr>
</tbody>
</table>

1. Design an algorithm with running time $O^* \left(\left(\frac{n}{2} \right)! \right)$, where $n = |V|$.
2. Design a polynomial-space $O^*\left(2^{n/2}\right)$-time inclusion-exclusion algorithm.

Solution (sketch)
1. Let (X,Y) be a bipartition of V such that X and Y are independent sets. If $|X| \neq |Y|$, then return 0. Denote $X = \{x_1, \ldots, x_{n/2}\}$ and $Y = \{y_1, \ldots, y_{n/2}\}$. For each permutation $\pi = (y_{\pi(1)}, \ldots, y_{\pi(n/2)})$ of Y,

$$\{x_iy_{\pi(i)} : 1 \leq i \leq n/2\}$$

is a perfect matching iff $x_iy_{\pi(i)} \in E$ for each $i \in \{1, \ldots, n/2\}$.

2. U: contains each set of $n/2$ edges $\{e_1, \ldots, e_{n/2}\}$ such that $x_i \in e_i$. For $v \in Y$, $A_v = \{S \in U : v \in \bigcup S\}$. The number of perfect matchings is

$$\left| \bigcap_{v \in Y} A_v \right| = \sum_{S \subseteq Y} (-1)^{|S|} \left| \bigcap_{v \in S} A_v \right|$$

$$= \sum_{S \subseteq Y} (-1)^{|S|} \prod_{i=1}^{n/2} |N(x_i) \setminus S|.$$

6 Further Reading

Advanced Reading