Introduction to Software Security Analysis
(Week 1)

Yulei Sui

School of Computer Science and Engineering
University of New South Wales, Australia

- ___|]
COMP6131 Software Security Analysis 2025

Outline

e Background and Introduction to Software Analysis and Verification
e Course Project Structure (Labs and Assignments)
¢ Vulnerability Assessment and Secure Coding.

__|
COMP6131 Software Security Analysis 2025

;
-
Windows

COMP6131 Software Security Analysis 2025

Modern System Software

— Extremely Large and Complex

SOFTWARE SIZE (MILLION LINES OF CODE)

Chevy Volt -
Intuit Quickbooks IIIIIIII"

Windows NT 4.0

Mozilla Core
MysQL

Linux 3.1

COMP6131 Software Security Analysis 2025

Software Becomes More Buaay

More
Complex!

Microsoft: 70 percent of all security bugs are
memory safety issues

Memory Leaks

Buffer Overflows

Null Pointers More

svsTem SRASIETY Buggy!

Use-After-Frees

Data-races

COMP6131 Software Security Analysis 2025

Software Becomes More Buqu

===

Vulnerabilities (security defects)
The risks

Designappsto
run in cloud

E Quality issue: many more “underwater” than those reported “above the water”

The National Vulnerability Database (DHS/US-CERT) “ ,a

« Lists >47,000 documented vulnerabilities

Undiscovered Junreported (0-day)
vulneral es are huge

+ 20X" multiplier
+ 47,000 x 20 = estimated 940,000 vulnerabilities
replicatedin many products
Greater than 80% of attacks
‘ happen at the application layer

hitps://www.slideshare.net/innotech_conference/hp-cloud-security-inno-tech-20140501

COMP6131 Software Security Analysis 2025

ch

Data-races

PTN

More
Complex!

More
Buggy!

Code Review by Developers

However ...

incomplete debug report

A large project (e.g., consists of millions of lines of code) is almost impossible to be
manually checked by human :

-- intractable due to potentially unbounded number of paths that must be analyze
-- undecidable in the presence of dynamically allocated memory and recursive data structures

COMP6131 Software Security Analysis 2025

How about real-world large programs?
Whole-Program CFG of twolf (20.5K lines of code)

/

_. i IPIE ; I #functions: 194

#pointers: 20773 #loads/stores: 8657 Costly to reason about flow of values
on CFGs!

COMP6131 Software Security Analysis 2025

How about real-world large programs?

Call Graph of gcc (230.5K lines of code)
/ Sgen eyt s R

e R e R e
e P e e e e B e e B R R P el e e e e P o S

%Fﬁ%%%%%@%%%@% -1 5 A S P P R S B B - -+ E B B
v< [e e 1< B -+~ - [e P s S S~ 5 e B R FR P R e -+
e gt o a5 g L L B e e P
#functions: 2256 #pointers: 134380 #loads/stores: 51543

Costly to reason about flow of values on CFGs!

COMP6131 Software Security Analysis 2025

COMP6131 Software Security Analysis 2025

Automated Code Analysis and Verification

Automatically analyzing and assuring the behavior of computer programs
regarding a property such as correctness, robustness, safety and liveness.
¢ Software Analysis (Week 1-3, Assignment 1)
* Aim to find the existence of bugs (If a path exists where a bug may be
triggered, report that bug)
e Software Verification (Week 4-5,7-10, Assignments 2 and 3)

* Aim to prove the absence of bugs (For all paths, user specification should be
satisfied and no bug should be triggered)

e
COMP6131 Software Security Analysis 2025

10

Automated Code Analysis and Verification

e Software analysis and verification are useful for proving the correctness,
safety and security of a program, and a key aspect of testing can execute as
expected.

* "Have we made what we were trying to make?”
® Are we building the system right?
® Does our design meet the user expectations?
® Does the implementation conform to the specifications?

__| 11
COMP6131 Software Security Analysis 2025

Why Software Analysis and Verification?

e Better quality in terms of more secure and reliable software
® Help reduce the chances of system failures and crashes
e Cut down the number of defects found during the later stages of development
* Rule out the existence of any backdoor vulnerability to bypass a program’s
authentication
* Reduce time to market
® Less time for debugging.
® Less time for later phase testing and bug fixing
e Consistent with user expectations/specifications
® Assist the team in developing a software product that conforms to the specified
requirements
* Help get a better understanding of (legacy) parts of a software product

__|
COMP6131 Software Security Analysis 2025

12

What Types of Analysis/Verification We Have?

Code verification vs design verification

¢ Design approach: analyzing and verifying the design of a software system.

* Design specs: specification languages for components of a system. For
example,
® Zlanguage for business requirements,
® Promela for Communicating Sequential Processes
B method based on Abstract Machine Notation.
Specification Language (VDM-SL)

COMP6131 Software Security Analysis 2025

13

What Types of Analysis/Verification We Have?

Code verification vs design verification

¢ Design approach: analyzing and verifying the design of a software system.

* Design specs: specification languages for components of a system. For
example,
® Zlanguage for business requirements,
Promela for Communicating Sequential Processes
B method based on Abstract Machine Notation.
Specification Language (VDM-SL)

e Code approach: verifying correctness of source code (This course)
® Code specs (e.g., return a sorted list and free of memory errors):
® Assertions and pre/postconditions in Hoare logic (design by contract)
Passing user-provided test cases

No crashes and free of memory errors
[]

e
COMP6131 Software Security Analysis 2025

13

How to Perform Code Analysis and Verification?

- ___|]
COMP6131 Software Security Analysis 2025

14

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
¢ Dynamic approach (Checking code behavior during program execution)
® Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs
Stress testing
Model-based testing
Fuzz testing

__|
COMP6131 Software Security Analysis 2025

14

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
¢ Dynamic approach (Checking code behavior during program execution)
® Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs
® Stress testing
* Model-based testing
® Fuzz testing
[]
¢ Static approach (inspecting the code before it runs) (This course)
e All path verification which aims to prove that a program satisfies the
specification of its behavior by reasoning about all possible program paths
® Control- and Data-flow analysis (computing control- and data-dependence of a
program on code graphs to collect reachability properties) - Assignment 1

__|
COMP6131 Software Security Analysis 2025

14

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
¢ Dynamic approach (Checking code behavior during program execution)
® Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs
Stress testing
Model-based testing
Fuzz testing

¢ Static approach (inspecting the code before it runs) (This course)
e All path verification which aims to prove that a program satisfies the
specification of its behavior by reasoning about all possible program paths
® Control- and Data-flow analysis (computing control- and data-dependence of a
program on code graphs to collect reachability properties) - Assignment 1
® Symbolic execution (a practical way to use symbolic expressions instead of
concrete values to explore the possible program paths) - Assignment 2

__|
COMP6131 Software Security Analysis 2025

14

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
¢ Dynamic approach (Checking code behavior during program execution)
® Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs
Stress testing
Model-based testing
Fuzz testing

¢ Static approach (inspecting the code before it runs) (This course)
e All path verification which aims to prove that a program satisfies the
specification of its behavior by reasoning about all possible program paths
® Control- and Data-flow analysis (computing control- and data-dependence of a
program on code graphs to collect reachability properties) - Assignment 1
® Symbolic execution (a practical way to use symbolic expressions instead of
concrete values to explore the possible program paths) - Assignment 2
® Abstract interpretation (a general theory of sound approximation of a program
through program abstractions or abstract values) - Assignment 3
__|
COMP6131 Software Security Analysis 2025

14

The Project of This Course

Goal of this course: develop your own software verification tool in 10-week time.
More concretely: develop a static analysis engine in C++ to analyze and verify C

programs for bug detection at compile time.

Code Analysis
and Verification

Checker
e

alll b

Source Code Static Analysis Engine Analysis Report

COMP6131 Software Security Analysis 2025

15

The Project of This Course

Assignment 1:Information Flow Tracking 1.Tainted Information Flow

|
|
—— > Assignment 2:Symbolic Execution .4>, 2.Assertion Checking E
1 1 1 1
1 N . s 1 =
| Assignnent 3:pbstract Interpretation gym | oo Do ;
Source Code Static Analysis Engine Analysis Report

- __|]
COMP6131 Software Security Analysis 2025

16

The Project of This Course

[C+ Programming }

[LLVM Compiler & IR}[Code Graph}
Week 3
[Control Flow][Data Flow]
~ v

.Tainted Information Flow

[

|
|
|
|
|
i
i
| Week 2 Lab Exercise 1
|
|
|
h
|
|
|
|
|

1
|
I
2.Assertion Checking |
I
I
I

,[Taint Analysis]ASSlgnment 1]
E Week 4-5,7 ! 3.Buffer Overflow
:[Manual Assertion Prover]Lab Exercise 2, :
I .
Source Code E{ Automated Assertion Prover]Assignment 2 Ana1y51s Report
" Week 8-10 |
1 1 '
:{ Manual Abstra;tmn }Lab Exercise 3!
| Interpretation H
! Automated Abstraction . |
1
:{ Interpretation }Asugnment 3 H

Static Analysis Engine

- ___|]
COMP6131 Software Security Analysis 2025

17

The Project of This Course

[C++ Programming }

Week 2 Lab Exercise 1
[LLvm Compiler & IR|Code Graph)
Week 3

X X l
[Control Flow][Data Flow] 1.Tainted Information Flow:
= = 2.Assertion Checki !
,[Taint Analysis }Assignment 1 -Assertion Checking |
j Week 45,7 = ([3-puffer overflow J
:[Manual Assertion Prover }Lab Exercise 2
' .
Source Code E[Automated Assertion Prover }Assignment 2 Ana1y51s Report
" Week 8-10 |
1 3 '
:[Manual Abstra;tlon }Lab Exercise 3!
| Interpretation H
| Automated Abstraction . i
I
:{ Interpretation }Asugnment 3 |

Static Analysis Engine

- __|]
COMP6131 Software Security Analysis 2025

18

The Project of This Course

The project sounds complicated?

- __|]
COMP6131 Software Security Analysis 2025

19

https://github.com/SVF-tools/SVF

The Project of This Course

The project sounds complicated?
¢ Do | need to implement it from scratch?

- __|]
COMP6131 Software Security Analysis 2025

19

https://github.com/SVF-tools/SVF

The Project of This Course

The project sounds complicated? <&t

¢ Do | need to implement it from scratch?
* No, you will implement a lightweight tool based on the open-source framework
SVF (https://github.com/SVF-tools/SVF)
® SVF, an impactful code analysis framework developed and maintained by
UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).

¢ How many lines of code do | need to write?

e 19
COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

The Project of This Course

N
‘%E% !.a 41:1’"""
The project sounds complicated? <<w# =5

¢ Do | need to implement it from scratch?
* No, you will implement a lightweight tool based on the open-source framework
SVF (https://github.com/SVF-tools/SVF)
® SVF, an impactful code analysis framework developed and maintained by
UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).
¢ How many lines of code do | need to write?
® 2,000 lines of core code in total for all the assessments

¢ Really? What are the challenges then?

e 19
COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

The Project of This Course

‘q'atr
The project sounds complicated? <&t

¢ Do | need to implement it from scratch?

* No, you will implement a lightweight tool based on the open-source framework
SVF (https://github.com/SVF-tools/SVF)

® SVF, an impactful code analysis framework developed and maintained by
UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).

¢ How many lines of code do | need to write?

® 2,000 lines of core code in total for all the assessments

¢ Really? What are the challenges then?

® Good programming and debugging skills.

® Understanding of basic compiler principles,
* Knowledge of taint analysis, symbolic execution, and abstract interpretation.
* Please do attend each lecture and lab to make sure you can keep up!

COMP6131 Software Security Analysis 2025

19

https://github.com/SVF-tools/SVF

Vulnerability Assessment and Secure Coding
(Week 1)

Yulei Sui

School of Computer Science and Engineering
University of New South Wales, Australia

- __|]
COMP6131 Software Security Analysis 2025

20

Common Types of Software Vulnerabilities

e Memory safety errors
°* Memory Leaks
® Null pointer dereferences
® Dangling pointers and use-after-frees
e Buffer overflows
¢ Arithmetic errors
® Integer overflows
¢ Division by zero
e Tainted inputs
¢ Tainted information flow
® Code injection
® Format string
® SQL injection
¢ Side-channel attacks
® Timing attacks

- ___|]
COMP6131 Software Security Analysis 2025

21

Let us take a look at examples of the above vulnerabilities,
how to fix them and implement more secure programming
practices (e.g., using assertions)

__|
COMP6131 Software Security Analysis 2025

22

Memory Leaks (A Vulnerable Example)
A memory leak occurs when dynamically allocated memory is never freed along a
program execution path.

- __|]
COMP6131 Software Security Analysis 2025

23

Memory Leaks (A Vulnerable Example)
A memory leak occurs when dynamically allocated memory is never freed along a
program execution path.

1 typedef struct Node {

2 int data; 1 void free_list(List *1) {

3 struct Node *next; 2 Node* current = 1l->head;

4 } Node; 3 while (current != NULL) {

5 typedef struct List { 4 node *next = current->next;

6 struct Node *head; 5 delete current;

7 } List; 6 current = next;

8 7 }

9 List* create_list(int num){ 8}

10 List* list = new List(); 9

11 list->head = new Node(); 10 int main(){

12 Node* current = list->head; 11 List* 1 = create_list(10); // create a list of 10 nodes

13 for(i = 0; i < num - 1; i++){ 12 // ... do something with the list

14 current = new Node(); 13 free_list(l); // deallocate the memory for the list

15 current = current->next; 14}

16 }

17 return list;

18}
| 23

COMP6131 Software Security Analysis 2025

Memory Leaks (A Vulnerable Example)
A memory leak occurs when dynamically allocated memory is never freed along a
program execution path.

typedef struct Node {

int data; void free_list(List *1) {

1
2 1

3 struct Node *next; 2 Node* current = 1l->head;

4 } Node; 3 while (current != NULL) {

5 typedef struct List { 4 node *next = current->next;

6 struct Node *head; 5 delete current;

7 } List; 6 current = next;

8 7 }

9 List* create_list(int num){ 8}

10 List* list = new List(); 9

11 list->head = new Node(); 10 int mainO{

12 Node* current = list->head; 11 List* 1 = create_list(10); // create a list of 10 nodes
13 for(i = 0; i < num - 1; i++){ 12 // ... do something with the list

14 current = new Node(); 13 free_list(1l); // deallocate the memory for the list

15 current = current->next; 14}

13 ietum list; Do we have a bug in the above code?

18 } If so, how do we fix the bug?

23
COMP6131 Software Security Analysis 2025

Memory Leaks (A Secure Example)

1 typedef struct Node {
2 int data;
int cata; 1 void free_list(List *1) {
3 struct Node *next;
4 } Node: 2 Node* current = 1l->head;
? . 3 while (current !'= NULL) {

5 typedef struct List {
4 node *next = current->next;

6 struct Node *head;

. 5 delete current;

7 } List;

8 6 current = next;
7

9 List* create_list(int num){ 8 ¥

10 List* 1list = new List(); o}

11 list->head = new Node(); 10

12 Nodex* current = list->head; A

13 for(i = 0; i < num - 1; i++){ 11 int main(){

’ ’ 12 List* 1 = create_list(10); // create a list of 10 nodes

14 current->next = new Node(); - .

15 current = curremt->next: 13 // ... do something with the list

1 3 ’ 14 free_list(l); // deallocate the memory for the list
15

17 return list; ¥

18 }

| 24

COMP6131 Software Security Analysis 2025

Memory Leaks (A Secure Example)

1 typedef struct Node {

2 int data; 1 void free_list(List *1) {

3 struct Node *next; 2 Node* current = 1->head;

4 } Node; 3 while (current !'= NULL) {

5 typedef struct List { 4 node *next = current->next;

6 struct Node *head; 5 delete current;

7 } List; 6 current = next;

8 7 }

9 List* create_list(int num){ 8 delete 1;

10 List* list = new List(); 9 }

11 list->head = new Node(); 10

12 Node* current = list->head; 11 int main(){

13 for(i = 0; 1 < num - 1; i++){ 12 List* 1 = create_list(10); // create a list of 10 nodes

14 current->next = new Node(); 13 // ... do something with the list

15 current = current->next; 14 free_list(l); // deallocate the memory for the list

16 } 15 1 = nullptr; // avoid misuse later

17 return list; 16 }

18 }
| 25

COMP6131 Software Security Analysis 2025

Null Pointer Dereferences (A Vulnerable Example)

A NULL pointer dereference occurs when the application dereferences a pointer
that it expects to be valid, but is NULL, typically causing a crash or exit.

1 struct Student{

2 int id; 1 int main(int argc, char **argv){

8 char* name; 2 int stulD;

4 } Student; 3 scanf ("%d%c", &stulD);

5 Student students[10]= {...}; 4 Student* student = findStuRecord(stulD);

6 5 printf("%s\n", student->name);

7 Student* findStuRecord(int sID){ 6}

8 for(int i = 0; i < 10; i++){

9 if (students[i].id == sID)

10 return &students[i];

11 }

12 return nullptr;

13 }
| 26

COMP6131 Software Security Analysis 2025

Null Pointer Dereferences (A Vulnerable Example)

A NULL pointer dereference occurs when the application dereferences a pointer
that it expects to be valid, but is NULL, typically causing a crash or exit.

struct Student{
int id;

1
2 1 int main(int argc, char **argv){
8 char* name; 2 int stulD;
4 } Student; 3 scanf ("%d%c", &stulD);
5 Student students[10]= {...}; 4 Student* student = findStuRecord(stulD);
6 5 printf ("%s\n", student->name);
7 Student* findStuRecord(int sID){ 6}
8 for(int i = 0; i < 10; i++){
o if (students[i].id == sID) Do we have a bug in the above code? If
10 return &students[i]; |
11 } s0, where should we put the assertion to
12 return nullptr; Stop the bug’)
13 }
| 26

COMP6131 Software Security Analysis 2025

Null Pointer Dereferences (A Secure Example)

A NULL pointer dereference occurs when the application dereferences a pointer
that it expects to be valid, but is NULL, typically causing a crash or exit.

1 struct Student{

2 int id;

3 char* name;

4 } Student; 1 int main(int argc, char **argv){

5 Student students[10]= {...}; 2 int stulD;

6 3 scanf ("%d%c", &stulD);

7 Student* findStuRecord(int sID){ 4 Student* student = findStuRecord(stulD);

8 for(int i = 0; i < 10; i++){ 5 assert(student!=nullptr);

9 if (students[i].id == sID) 6 printf("/%s\n", student->name);

10 return &students[i]; 7 }

11 }

12 return NULL;

13 }
| 27

COMP6131 Software Security Analysis 2025

Dangling references and use-after-frees
Dangling references are references that do not resolve to a valid memory object

(e.g., caused by a use-after-free).

Dangling

Point to the
memory
location that
used to hold
original
object

Pointer

Pointer

4

[De!eled\

5 Object
4
P

N

r/ \
| Object ,‘
. \ /
N 4
//\\~
\

Pointer { \
\H Object }

\

\ 4

Pointer

COMP6131 Software Security Analysis 2025

28

Dangling References / Use-After-Frees (A Vulnerable Example)

Dangling references are references that do not resolve to a valid memory object
(e.g., caused by a use-after-free).

char* ptr = (char*)malloc(SIZE);
if (err) {

abrt = 1;
free(ptr);

1f . (abrt) {

1
2

3

4

5

6 }
7

8

9 logError("operation aborted before commit", ptr);
0

}
Do we have a bug in the above code? If so, how should we fix the bug?

e 29
COMP6131 Software Security Analysis 2025

Dangling References / Use-After-Frees (A Vulnerable Example)

Dangling references and wild references are references that do not resolve to a
valid destination

char* ptr = (char*)malloc(SIZE);

1
2 ...

3 if (err) {

4 abrt = 1;

5 free(ptr);

6 ptr = nullptr;
7}

8

9 if (abrt) {
10 assert(ptr != nullptr);
11 logError("operation aborted before commit", ptr);

e 30
COMP6131 Software Security Analysis 2025

Buffer Overflows

A buffer overflow occurs when the volume of data exceeds the storage capacity of the
memory buffer, so that the program attempting to write the data to the buffer overwrites
adjacent memory locations.

| ¢— buffer — | overflow

- __|]
COMP6131 Software Security Analysis 2025

31

Buffer Overflows (A Vulnerable Example)

A buffer overflow occurs when the volume of data exceeds the storage capacity of the
memory buffer, so that the program attempting to write the data to the buffer overwrites
adjacent memory locations.

1 void bufferRead() {
2 int n = 0;
3 int ret = scanf("%d", &n);
4 if (ret !'=1 || n > 100) {
5 return;
6 }

7 char *p = (char *)malloc(n);
8 int y = n;

if (p == NULL) return;

10 plyl = 'a';

1 free(p);

©o

Do we have a bug in the above code? If so, where is the bug?

e 32
COMP6131 Software Security Analysis 2025

Buffer Overflows (A Secure Example)

A buffer overflow occurs when the volume of data exceeds the storage capacity of the
memory buffer, so that the program attempting to write the data to the buffer overwrites
adjacent memory locations.

void bufferRead() {

1
2 int n = 0;

3 int ret = scanf("%d", &n);

4 if (ret '=1 || n > 100) {
5 return;

6 }

7 char *p = (char *)malloc(n);
8 int y = n;

9 if (p == NULL) return;

10 assert(y < n);

" plyl = 'a';

12 free(p);

13 }

- __|]
COMP6131 Software Security Analysis 2025

33

Integer Overflows
An integer overflow occurs when an arithmetic operation attempts to create a numeric
value that is outside of the range that can be represented with a given number of digits —
either higher than the maximum or lower than the minimum representable value.

e
COMP6131 Software Security Analysis 2025

34

Integer Overflows
An integer overflow occurs when an arithmetic operation attempts to create a numeric

value that is outside of the range that can be represented with a given number of digits —

either higher than the maximum or lower than the minimum representable value.

Typical binary register widths for unsigned integers include

4 bits: maximum representable value 24 - 1 = 15
8 bits: maximum representable value 28 - 1 = 255
16 bits: maximum representable value 2'¢ - 1 = 65,535

32 bits: maximum representable value 232 - 1 = 4,294,967,295 (the most common
width for personal computers as of 2005),

64 bits: maximum representable value 254 - 1 = 18,446,744,073,709,551,615 (the
most common width for personal computer CPUs, as of 2017),

128 bits: maximum representable value 2128 - 1 =
340,282,366,920,938,463,463,374,607,431,768,211,455

e
COMP6131 Software Security Analysis 2025

34

Integer Overflows

In C/C++, overflows of sighed integer will cause undefined behavior. Overflows of
unsigned integer will cause a wraparound. For unsigned integers, when the value
exceeds the maximum value (2" for some n), the result is reduced to that value modulo 2”.
Here are some of C’s various integer types and the values (in standard library):

¢ INT_MIN (the minimum value for an integer): -2,147,483,648 bits

e INT_MAX (the maximum value for an integer): +2,147,483,647 bits

e UINT_MAX (the maximum value for an unsigned integer): 4,294,967,295 bits

e 35

COMP6131 Software Security Analysis 2025

Integer Overflows

In C/C++, overflows of signed integer will cause undefined behavior. Overflows of
unsigned integer will cause a wraparound. For unsigned integers, when the value
exceeds the maximum value (2" for some n), the result is reduced to that value modulo 2”.
Here are some of C’s various integer types and the values (in standard library):

¢ INT_MIN (the minimum value for an integer): -2,147,483,648 bits
INT_MAX (the maximum value for an integer): +2,147,483,647 bits
UINT_MAX (the maximum value for an unsigned integer): 4,294,967,295 bits
UINT-MAX +1 =7
UINT.MAX +2 =7
UINT.MAX +3 =7

e 35
COMP6131 Software Security Analysis 2025

Integer Overflows
In C/C++, overflows of signed integer will cause undefined behavior but overflows of
unsigned integer will not. The resulting unsigned integer type is reduced modulo to the
number that is one greater than the largest value that can be represented by the resulting
type (modulo power of two, i.e., 27 where nis No. of bits).
Here are some of C’s various integer types and the values (in standard library):
e INT_MIN (the minimum value for an integer): -2,147,483,648 bits
INT_MAX (the maximum value for an integer): +2,147,483,647 bits
UINT_MAX (the maximum value for an unsigned integer): 4,294,967,295 bits
UINT_-MAX + 1 ==
UINT_MAX + 2 ==

UINT_-MAX + 3 ==

e 36
COMP6131 Software Security Analysis 2025

Integer Overflows
Compilers may exploit undefined behavior and optimize when there is an overflow of a
signed integer, producing code that you may not want!

- __|]
COMP6131 Software Security Analysis 2025

37

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

Integer Overflows

Compilers may exploit undefined behavior and optimize when there is an overflow of a
signed integer, producing code that you may not want!

signed int x ;

1
2 if(x > x + 1) // incorrect way to detect overflow
3 {

4 // handle potential overflow

5 }

1
2
3
4

signed int x ;

if (x > INT_MAX - 1) { // correct way
// handle potential overflow

}

The above is an incorrect way to detect integer overflow. x is a signed integer, and x + 1
overflows (e.g., x = INT_MAX), which is undefined. The compiler is allowed to do anything,
e.g., optimize away the branch, produce incorrect results, or crash.

COMP6131 Software Security Analysis 2025

37

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

Integer Overflows
Compilers may exploit undefined behavior and optimize when there is an overflow of a
signed integer, producing code that you may not want!

1 signed int x ;

. . signed int x ;
2 if(x > x + 1) // incorrect way to detect overflow & !

|
3 q 2 if (x > INT_MAX - 1) { // correct way
4 // handle potential overflow j } // handle potential overflow

5 }

The above is an incorrect way to detect integer overflow. x is a signed integer, and x + 1
overflows (e.g., x = INT_MAX), which is undefined. The compiler is allowed to do anything,
e.g., optimize away the branch, produce incorrect results, or crash.

1;

0){ //Be careful using signed integers as bounds in loops and branches!

1 signed i =
2 while (i >
3 i x= 2;
4}
The above behavior is undefined and when compiled under -O3* using GCC (version
4.7.2 on Debian 4.7.2-5). It performs branch simplifications, producing an infinite loop.

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow
37
COMP6131 Software Security Analysis 2025

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

Integer Overflows (A Vulnerable Example)

int nresp = packet_get_int();

if (nresp > 0) {
response = xmalloc(nresp#*sizeof (charx));

for (1 = 0; i < nresp; i++)

1
2
3
4
5
6
7 response[i] = packet_get_string(NULL);
8

}
Do we have a bug in the above code? If so, where is the bug?

- __|]
COMP6131 Software Security Analysis 2025

Integer Overflows (A Vulnerable Example)

int nresp = packet_get_int();

if (nresp > 0) {
response = xmalloc(nresp#*sizeof (charx));

for (i = 0; i < nresp; i++)

1
2
3
4
5
6
7 response[i] = packet_get_string(NULL);
8

}

Do we have a bug in the above code? If so, where is the bug?

¢ An integer overflow that leads to a buffer overflow found in an older version of
OpenSSH (3.3):

e |f nresp is greater than or equal to 1073741824 and sizeof(char*) is 4 (which is typical
of 32-bit systems), then nresp*sizeof(char*) results in an overflow. Therefore,
xmalloc() receives and allocates a small buffer. The subsequent loop causes a heap
buffer overflow, which may, in turn, be used by an attacker to execute arbitrary code.

e 38
COMP6131 Software Security Analysis 2025

Integer Overflows (A Secure Example)

int nresp = packet_get_int();
assert(nresp < userDefinedSize);

if (nresp > 0) {

response = xmalloc(nresp*sizeof (charx));

for (i = 0; i < nresp; i++)
response[i] = packet_get_string(NULL) ;
}

0 N O g s~ W N =

Make sure the size received is under a
user budget.

- __|]
COMP6131 Software Security Analysis 2025

39

Integer Overflows (A Secure Example)

int nresp = packet_get_int();
int nresp = packet_get_int();

A 0N =

1
2 assert(nresp < userDefinedSize); if (nresp > 0) {
3 if (nresp > 0) { assert(nresp <= userDefinedSize/sizeof (char
4 response = xmalloc(nresp*sizeof (char*)); *));
5 5 response = xmalloc(nresp*sizeof (charx));
6 for (i = 0; i < nresp; i++) 6
7 responsel[i] = packet_get_string(NULL) ; 7 for (i = 0; i < nresp; i++)
8 } 8 responsel[i] = packet_get_string(NULL);
9}

Make sure the size received is under a

user budget. Make sure the malloc can safely allocate

memory under a user budget.

e 39
COMP6131 Software Security Analysis 2025

Division by Zero (A Vulnerable Example)

The product divides a value by zero. The C standard (C11 6.5.5) states that
dividing by zero has undefined behavior for either integer or floating-point
operands. It can cause program crash or miscompilation by compilers.

1 unsigned computeAverageResponseTime (unsigned totalTime, unsigned numRequests)
2 {

3 return totalTime / numRequests;

4}

Is the above code secure?

- __|]
COMP6131 Software Security Analysis 2025

40

Division by Zero (A Secure Example)

The product divides a value by zero. The C standard (C11 6.5.5) states that
dividing by zero has undefined behavior for either integer or floating-point
operands. It can cause program crash or miscompilation by compilers.

unsigned computeAverageResponseTime (unsigned totalTime, unsigned numRequests)

1
2 {

3 assert (numRequests > 0);

4 return totalTime / numRequests;
5

COMP6131 Software Security Analysis 2025

41

Tainted Information Flow (A Vulnerable Example)

Malicious user inputs may cause unexpected program behaviors, information
leakage or attacks when executing a target program.

void main(int argc, char **argv)

1
2 {

3 char *pMsg = packet_get_string();

4 ParseMsg ((LOGIN_MSG_BODY *)pMsg) ;

5}

6

7 void ParseMsg(LOGIN_MSG_BODY *stLoginMsgBody)

8 {

9 for (int ulIndex = 0; ulIndex < stLoginMsgBody->usLoginPwdLen; ulIndex++) {
10 // do something

11 }

12 }

- ___|]
COMP6131 Software Security Analysis 2025

42

Tainted Information Flow (A Vulnerable Example)

Malicious user inputs may cause unexpected program behaviors, information
leakage or attacks when executing a target program.

void main(int argc, char **argv)

1
2 {

3 char *pMsg = packet_get_string();

4 ParseMsg ((LOGIN_MSG_BODY *)pMsg) ;

5}

6

7 void ParseMsg(LOGIN_MSG_BODY *stLoginMsgBody)

8 {

9 for (int ulIndex = 0; ulIndex < stLoginMsgBody->usLoginPwdLen; ulIndex++) {
10 // do something

11 }

12 }

Do we have a bug in the above code? If so, where is the bug?

- ___|]
COMP6131 Software Security Analysis 2025

42

Tainted Information Flow (A Secure Example)

void main(int argc, char **argv)

1
2 {

3 char *pMsg = packet_get_string();

4 ParseMsg ((LOGIN_MSG_BODY *)pMsg) ;

5 }

6

7 void ParseMsg(LOGIN_MSG_BODY *stLoginMsgBody)

8 {

9 assert (stLoginMsgBody->usLoginPwdLen < userDefinedSize);

10 for (int ulIndex = 0; ullndex < stLoginMsgBody->usLoginPwdLen; ulIndex++) {
11 // do something

12 }

13 }

User input can cause long loops to hang the target program.

- __|]
COMP6131 Software Security Analysis 2025

43

Code Injection (A Vulnerable Example)

Code injection is the exploitation of a computer bug that is caused by processing invalid
data. The result of successful code injection can be disastrous, for example, by disclosing

confidential information.

string user_id, command;
command = "cat user_info/";
cin >> user_id; // user_id is an integer

system(command + user_id);

Is the above code secure?

IR R

COMP6131 Software Security Analysis 2025

44

Code Injection (A Vulnerable Example)

Code injection is the exploitation of a computer bug that is caused by processing invalid
data. The result of successful code injection can be disastrous, for example, by disclosing

confidential information.

string user_id, command;
command = "cat user_info/";
cin >> user_id; // user_id is an integer

command + user_id);
Is the above code secure?
¢ Before system(), we did not check the legality of user_id. first, if x is a piece of
dangerous code, it will be executed in system() and return harmful results.

e For example, if user types "05 && ipconfig”, it will disclose ip address.

IR R

44

COMP6131 Software Security Analysis 2025

Code Injection (A Secure Example)

To detect the bug, we need to make sure after appending $user_id will not generate
another command.

string user_id, command;

command = "cat user_info/";

cin>>user_id; // what if user input "05 && ipconfig"
assert(isdigit(user_id));

system(command + user_id);

a H~ W NN =

In the assert call, we should check whether user._id consists entirely of numeric characters,
so that another malicious command would not be injected.

e 45

COMP6131 Software Security Analysis 2025

Format String

The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

#include <stdio.h>

1
2 void main(int argc, char x*argv){ // assuming at least two arguments (argc > 1)
3 printf ("%s\n", argv[1]);

4 printf(argv[1]);
5%

Which printf is safe and which printf is vulnerable? why?

COMP6131 Software Security Analysis 2025

46

Format String

The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

#include <stdio.h>

1
2 void main(int argc, char x*argv){ // assuming at least two arguments (argc > 1)
3 printf ("%s\n", argv[1]);

4 printf(argv[1]);
5%

Which printf is safe and which printf is vulnerable? why?

® The line printf ("%s", argv[1]); is safe, if you compile the program and run it:
® _/example "Hello World Y%ss'%sslhshs"

COMP6131 Software Security Analysis 2025

46

Format String

The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

#include <stdio.h>

1
2 void main(int argc, char x*argv){ // assuming at least two arguments (argc > 1)
3 printf ("%s\n", argv[1]);

4 printf(argv[1]);
5%

Which printf is safe and which printf is vulnerable? why?

® The line printf ("%s", argv[1]); is safe, if you compile the program and run it:

® _/example "Hello World Y%ss'%sslhshs"
® Qutput: "Hello World %s¥hshshshshs"

COMP6131 Software Security Analysis 2025

46

Format String
The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char x*argv){
3 printf("%s\n", argv[1]);

4 printf(argv[1]);

5 }

Which printf is safe and which printf is vulnerable? why?
® The line printf (argv[1]); in the example is vulnerable
® ./example "Hello World %sWsshslhshs"

e Qutput: program crash.

® The printf in the second line will interpret the %s%s%s%s%s%s in the input string as a
reference to string pointers. It will try to interpret every %s as a pointer to a string,
which will get to an invalid address, and attempting to access it will likely cause the
program to crash

I —— 47
COMP6131 Software Security Analysis 2025

Format String
The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char x*argv){
3 printf ("%s\n", argv[1]);

4 printf(argv[1]);

5

¢ |t can be more than a crash! An attacker can also use this to get information. For
example, running: ./example "Hello World %p %p %p %p %p %p"
e First printf output: Hello World %p %p %p %p %p %p

e Second printf output: Hello World 00OE133E 000E133E 0057F000 CCCCCCCC
CCCCCCCC cceeeecee

e Causing possible memory address leakage and exploit

https://cs155.stanford.edu/papers/formatstring-1.2.pdf

https://robin-sandhu.medium.com/understanding-the-format-string-vulnerability-b29576304886
e 48
COMP6131 Software Security Analysis 2025

https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://robin-sandhu.medium.com/understanding-the-format-string-vulnerability-b2957630d886

SQL Injection (A Vulnerable Example)

The attacker can add additional SQL statements at the end of the query
statements defined in advance (e.g., in the web application).

1 txtUserId = getRequestString("UserId");
2 txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserld;

Is the above code vulnerable? Why?

- __|]
COMP6131 Software Security Analysis 2025

49

SQL Injection (A Vulnerable Example)

The attacker can add additional SQL statements at the end of the query
statements defined in advance (e.g., in the web application).

1 txtUserId = getRequestString("UserId");
2 txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserld;

Is the above code vulnerable? Why?

¢ The original purpose of the code was to create an SQL statement to select a user,
with a given user id.

¢ |f there is nothing to prevent a user from entering "wrong” input, the user can enter
some “smart” input like this: "105 OR 1=1".

¢ "OR 1==1" will make logical expression after WHERE always true. Then the sql
database will return all the items from the Users table.

e
COMP6131 Software Security Analysis 2025

49

SQL Injection(A Secure Example)

To detect the bug, we need to verify the user’s input.

1 txtUserId = "105 OR 1=1";
2 assert(isdigit(txtUserId));
3 txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserld;

Assuming that user id is an integer, we should assert the user’s input is exactly an integer.

- __|]
COMP6131 Software Security Analysis 2025

50

Side-Channel Attacks (A Vulnerable Example)

bool insecureCmp(char *ca, char *cb, int length)
{

1
2

3 for (int i = 0; i < length; i++)
4 if (cali] != cblil)

5 return false;

6 return true;

7

}

- __|]
COMP6131 Software Security Analysis 2025

51

Side-Channel Attacks (A Vulnerable Example)

bool insecureCmp(char *ca, char *cb, int length)
{

1
2

3 for (int i = 0; i < length; i++)
4 if (cali] != cblil)

5 return false;

6 return true;

7

}

* The above code demonstrates a typical insecure string comparison which
stops testing as soon as a character doesn’t match.

- __|]
COMP6131 Software Security Analysis 2025

51

Side-Channel Attacks (A Vulnerable Example)

1 bool insecureCmp(char *ca, char *cb, int length)
2 {

3 for (int i = 0; i < length; i++)

4 if (cali] != cblil)

5 return false;

6 return true;

7

}

* The above code demonstrates a typical insecure string comparison which
stops testing as soon as a character doesn’t match.

e Assume a computer that takes 1 ms to check each character of a password
using the above function to validate passwords.

e [f the attacker guesses a completely wrong password, it will take 1 ms. Once
they get one character right, it takes 2 ms. Two correct characters take 3 ms,
and so on.

e
COMP6131 Software Security Analysis 2025

51

Side-Channel Attacks (A Secure Example)

{

for (int i = 0; i

return false;
return true;

N o g~ W N =

}

String comparison
'aaaaaaaaaaaaaaaaa’

String comparison
'baaaaaaaaaaaaaaaa’

String comparison
'Vaaaaaaaaaaaaaaaa'

0o N O g B~ W NN =

©

10 # String comparison
11 'Vlaaaaaaaaaaaaaaaa'
12 #

COMP6131 Software Security Analysis 2025

bool insecureCmp(char *ca, char *cb, int length)

< length; i++)

if (cali] != cblil)

time: 1ms
== 'V1cHt2S67DADJIm9s'

time: 1ms
== 'V1cHt2S67DADJIm9s'

time: 2ms
== 'V1cHt2S67DADJIm9s'

time: 3ms
== 'V1cHt2S67DADJIm9s'

52

Side-Channel Attacks (A Secure Example)

1 bool constTimeCmp(char *ca, char *cb, int length)
2 {

3 bool result = true;

4 for (int i = 0; i < length; i++)

5 result &= (cali] == cbl[il);

6 return result;

7

}

e The above secure version runs in constant-time by testing all characters and
using a bitwise operation to accumulate the result.

COMP6131 Software Security Analysis 2025

53

Side-Channel Attacks (A Secure Example)

1 bool constTimeCmp(char *ca, char *cb, int length)

2 {

3 bool result = true;

4 int i;

5 for (i = 0; i < length; i++)

6 result &= (cal[i]l == cb[il);

7 assert(length == i); // make sure the comparison times is proportional to the length.
8 return result;

9

}

* Make sure the each time calling the comparison function always costs
the same time (constant-time comparison)

* The above secure version runs in constant-time by testing all characters and
using a bitwise operation to accumulate the result.

e
COMP6131 Software Security Analysis 2025

54

What’s Next?

* (1) Configure your programming environment https://github.com/
SVF-tools/Software-Security-Analysis/wiki/Configure-IDE

® (2) Write, run and debug your ‘hello world* C++ program within your
configured IDE.

® (3) Reuvisit and practice C++ programming (more about programming
practices in our lab exercise)

® (4) Start working on Quiz-1 and Lab-1.

e
COMP6131 Software Security Analysis 2025

55

https://github.com/SVF-tools/Software-Security-Analysis/wiki/Configure-IDE
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Configure-IDE

