
Introduction to Software Security Analysis
(Week 1)

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

1

COMP6131 Software Security Analysis 2025

Outline

• Background and Introduction to Software Analysis and Verification
• Course Project Structure (Labs and Assignments)
• Vulnerability Assessment and Secure Coding.

2

COMP6131 Software Security Analysis 2025

Software Is Everywhere

3

COMP6131 Software Security Analysis 2025

Modern System Software
– Extremely Large and Complex

4

COMP6131 Software Security Analysis 2025

Software Becomes More Buggy

Memory Leaks

Buffer Overflows

Null Pointers

Use-After-Frees

Data-races

More
Complex!

More
Buggy!

5

COMP6131 Software Security Analysis 2025

Software Becomes More Buggy

Memory Leaks

Buffer Overflows

Null Pointers

Use-After-Frees

Data-races

More
Complex!

More
Buggy!Public vulnerabilities are tip of the iceberg !

https://www.slideshare.net/innotech_conference/hp-cloud-security-inno-tech-20140501

6

COMP6131 Software Security Analysis 2025

Code Review by Developers

A large project (e.g., consists of millions of lines of code) is almost impossible to be
manually checked by human :

!" intractable due to potentially unbounded number of paths that must be analyze
!" undecidable in the presence of dynamically allocated memory and recursive data structures

incomplete debug report

However!!#

7

COMP6131 Software Security Analysis 2025

How about real-world large programs?
Whole-Program CFG of twolf (20.5K lines of code)

#functions: 194

#pointers: 20773 #loads/stores: 8657 Costly to reason about flow of values
on CFGs!

8

COMP6131 Software Security Analysis 2025

How about real-world large programs?
Call Graph of gcc (230.5K lines of code)

#functions: 2256 #pointers: 134380 #loads/stores: 51543

Costly to reason about flow of values on CFGs!

9

COMP6131 Software Security Analysis 2025

Call Graph of 176.gcc

9

COMP6131 Software Security Analysis 2025

Automated Code Analysis and Verification

Automatically analyzing and assuring the behavior of computer programs
regarding a property such as correctness, robustness, safety and liveness.
• Software Analysis (Week 1-3, Assignment 1)

• Aim to find the existence of bugs (If a path exists where a bug may be
triggered, report that bug)

• Software Verification (Week 4-5,7-10, Assignments 2 and 3)
• Aim to prove the absence of bugs (For all paths, user specification should be

satisfied and no bug should be triggered)

10

COMP6131 Software Security Analysis 2025

Automated Code Analysis and Verification

• Software analysis and verification are useful for proving the correctness,
safety and security of a program, and a key aspect of testing can execute as
expected.
• ”Have we made what we were trying to make?”

• Are we building the system right?
• Does our design meet the user expectations?
• Does the implementation conform to the specifications?

11

COMP6131 Software Security Analysis 2025

Why Software Analysis and Verification?

• Better quality in terms of more secure and reliable software
• Help reduce the chances of system failures and crashes
• Cut down the number of defects found during the later stages of development
• Rule out the existence of any backdoor vulnerability to bypass a program’s

authentication
• Reduce time to market

• Less time for debugging.
• Less time for later phase testing and bug fixing

• Consistent with user expectations/specifications
• Assist the team in developing a software product that conforms to the specified

requirements
• Help get a better understanding of (legacy) parts of a software product

12

COMP6131 Software Security Analysis 2025

What Types of Analysis/Verification We Have?
Code verification vs design verification
• Design approach: analyzing and verifying the design of a software system.

• Design specs: specification languages for components of a system. For
example,

• Z language for business requirements,
• Promela for Communicating Sequential Processes
• B method based on Abstract Machine Notation.
• Specification Language (VDM-SL)
• . . .

• Code approach: verifying correctness of source code (This course)
• Code specs (e.g., return a sorted list and free of memory errors):

• Assertions and pre/postconditions in Hoare logic (design by contract)
• Passing user-provided test cases
• No crashes and free of memory errors
• . . .

13

COMP6131 Software Security Analysis 2025

What Types of Analysis/Verification We Have?
Code verification vs design verification
• Design approach: analyzing and verifying the design of a software system.

• Design specs: specification languages for components of a system. For
example,

• Z language for business requirements,
• Promela for Communicating Sequential Processes
• B method based on Abstract Machine Notation.
• Specification Language (VDM-SL)
• . . .

• Code approach: verifying correctness of source code (This course)
• Code specs (e.g., return a sorted list and free of memory errors):

• Assertions and pre/postconditions in Hoare logic (design by contract)
• Passing user-provided test cases
• No crashes and free of memory errors
• . . .

13

COMP6131 Software Security Analysis 2025

How to Perform Code Analysis and Verification?

Prove or disprove the correctness of your code against the specifications via
• Dynamic approach (Checking code behavior during program execution)

• Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs

• Stress testing
• Model-based testing
• Fuzz testing
• . . .

• Static approach (inspecting the code before it runs) (This course)
• All path verification which aims to prove that a program satisfies the

specification of its behavior by reasoning about all possible program paths
• Control- and Data-flow analysis (computing control- and data-dependence of a

program on code graphs to collect reachability properties) - Assignment 1
• Symbolic execution (a practical way to use symbolic expressions instead of

concrete values to explore the possible program paths) - Assignment 2
• Abstract interpretation (a general theory of sound approximation of a program

through program abstractions or abstract values) - Assignment 3

14

COMP6131 Software Security Analysis 2025

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
• Dynamic approach (Checking code behavior during program execution)

• Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs

• Stress testing
• Model-based testing
• Fuzz testing
• . . .

• Static approach (inspecting the code before it runs) (This course)
• All path verification which aims to prove that a program satisfies the

specification of its behavior by reasoning about all possible program paths
• Control- and Data-flow analysis (computing control- and data-dependence of a

program on code graphs to collect reachability properties) - Assignment 1
• Symbolic execution (a practical way to use symbolic expressions instead of

concrete values to explore the possible program paths) - Assignment 2
• Abstract interpretation (a general theory of sound approximation of a program

through program abstractions or abstract values) - Assignment 3

14

COMP6131 Software Security Analysis 2025

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
• Dynamic approach (Checking code behavior during program execution)

• Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs

• Stress testing
• Model-based testing
• Fuzz testing
• . . .

• Static approach (inspecting the code before it runs) (This course)
• All path verification which aims to prove that a program satisfies the

specification of its behavior by reasoning about all possible program paths
• Control- and Data-flow analysis (computing control- and data-dependence of a

program on code graphs to collect reachability properties) - Assignment 1

• Symbolic execution (a practical way to use symbolic expressions instead of
concrete values to explore the possible program paths) - Assignment 2

• Abstract interpretation (a general theory of sound approximation of a program
through program abstractions or abstract values) - Assignment 3

14

COMP6131 Software Security Analysis 2025

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
• Dynamic approach (Checking code behavior during program execution)

• Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs

• Stress testing
• Model-based testing
• Fuzz testing
• . . .

• Static approach (inspecting the code before it runs) (This course)
• All path verification which aims to prove that a program satisfies the

specification of its behavior by reasoning about all possible program paths
• Control- and Data-flow analysis (computing control- and data-dependence of a

program on code graphs to collect reachability properties) - Assignment 1
• Symbolic execution (a practical way to use symbolic expressions instead of

concrete values to explore the possible program paths) - Assignment 2

• Abstract interpretation (a general theory of sound approximation of a program
through program abstractions or abstract values) - Assignment 3

14

COMP6131 Software Security Analysis 2025

How to Perform Code Analysis and Verification?
Prove or disprove the correctness of your code against the specifications via
• Dynamic approach (Checking code behavior during program execution)

• Per path verification which aims to find bugs by exercising one execution path
a time based on specific testing inputs

• Stress testing
• Model-based testing
• Fuzz testing
• . . .

• Static approach (inspecting the code before it runs) (This course)
• All path verification which aims to prove that a program satisfies the

specification of its behavior by reasoning about all possible program paths
• Control- and Data-flow analysis (computing control- and data-dependence of a

program on code graphs to collect reachability properties) - Assignment 1
• Symbolic execution (a practical way to use symbolic expressions instead of

concrete values to explore the possible program paths) - Assignment 2
• Abstract interpretation (a general theory of sound approximation of a program

through program abstractions or abstract values) - Assignment 3
14

COMP6131 Software Security Analysis 2025

The Project of This Course

Goal of this course: develop your own software verification tool in 10-week time.
More concretely: develop a static analysis engine in C++ to analyze and verify C
programs for bug detection at compile time.

Source Code Static Analysis Engine

Code Analysis
and Verification

Checker

Analysis Report

15

COMP6131 Software Security Analysis 2025

The Project of This Course

Source Code Analysis ReportStatic Analysis Engine

Assignment 1:Information Flow Tracking
Assignment 2:Symbolic Execution
Assignment 3:Abstract Interpretation

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

16

COMP6131 Software Security Analysis 2025

The Project of This Course

Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

17

COMP6131 Software Security Analysis 2025

The Project of This Course

Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

18

COMP6131 Software Security Analysis 2025

The Project of This Course

The project sounds complicated? Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

• Do I need to implement it from scratch?
• No, you will implement a lightweight tool based on the open-source framework

SVF (https://github.com/SVF-tools/SVF)
• SVF, an impactful code analysis framework developed and maintained by

UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).
• How many lines of code do I need to write?

• 2,000 lines of core code in total for all the assessments
• Really? What are the challenges then?

• Good programming and debugging skills.
• Understanding of basic compiler principles,
• Knowledge of taint analysis, symbolic execution, and abstract interpretation.
• Please do attend each lecture and lab to make sure you can keep up!

19

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

The Project of This Course

The project sounds complicated? Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

• Do I need to implement it from scratch?

• No, you will implement a lightweight tool based on the open-source framework
SVF (https://github.com/SVF-tools/SVF)

• SVF, an impactful code analysis framework developed and maintained by
UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).

• How many lines of code do I need to write?
• 2,000 lines of core code in total for all the assessments

• Really? What are the challenges then?
• Good programming and debugging skills.
• Understanding of basic compiler principles,
• Knowledge of taint analysis, symbolic execution, and abstract interpretation.
• Please do attend each lecture and lab to make sure you can keep up!

19

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

The Project of This Course

The project sounds complicated? Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

• Do I need to implement it from scratch?
• No, you will implement a lightweight tool based on the open-source framework

SVF (https://github.com/SVF-tools/SVF)
• SVF, an impactful code analysis framework developed and maintained by

UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).
• How many lines of code do I need to write?

• 2,000 lines of core code in total for all the assessments
• Really? What are the challenges then?

• Good programming and debugging skills.
• Understanding of basic compiler principles,
• Knowledge of taint analysis, symbolic execution, and abstract interpretation.
• Please do attend each lecture and lab to make sure you can keep up!

19

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

The Project of This Course

The project sounds complicated? Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

• Do I need to implement it from scratch?
• No, you will implement a lightweight tool based on the open-source framework

SVF (https://github.com/SVF-tools/SVF)
• SVF, an impactful code analysis framework developed and maintained by

UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).
• How many lines of code do I need to write?

• 2,000 lines of core code in total for all the assessments
• Really? What are the challenges then?

• Good programming and debugging skills.
• Understanding of basic compiler principles,
• Knowledge of taint analysis, symbolic execution, and abstract interpretation.
• Please do attend each lecture and lab to make sure you can keep up!

19

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

The Project of This Course

The project sounds complicated? Static Analysis Engine

Manual Assertion Prover Lab Exercise 2

Automated Assertion Prover Assignment 2

Week 4-5,7

Manual Abstraction
Interpretation Lab Exercise 3

Automated Abstraction
Interpretation Assignment 3

Week 8-10

Control Flow Data Flow

Taint Analysis Assignment 1

Week 3

Intro. Vulnerability Assess

C+# Programming

LLVM Compiler & IR Code Graph

Lab Exercise 1

Week 1

Week 2

Analysis ReportSource Code

1.Tainted Information Flow

2.Assertion Checking

3.Buffer Overflow

• Do I need to implement it from scratch?
• No, you will implement a lightweight tool based on the open-source framework

SVF (https://github.com/SVF-tools/SVF)
• SVF, an impactful code analysis framework developed and maintained by

UNSW for 10+ years (ICSE, OOPSLA and SAS Distinguished Paper awards).
• How many lines of code do I need to write?

• 2,000 lines of core code in total for all the assessments
• Really? What are the challenges then?

• Good programming and debugging skills.
• Understanding of basic compiler principles,
• Knowledge of taint analysis, symbolic execution, and abstract interpretation.
• Please do attend each lecture and lab to make sure you can keep up!

19

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/SVF

Vulnerability Assessment and Secure Coding
(Week 1)

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

20

COMP6131 Software Security Analysis 2025

Common Types of Software Vulnerabilities
• Memory safety errors

• Memory Leaks
• Null pointer dereferences
• Dangling pointers and use-after-frees
• Buffer overflows

• Arithmetic errors
• Integer overflows
• Division by zero

• Tainted inputs
• Tainted information flow
• Code injection
• Format string
• SQL injection

• Side-channel attacks
• Timing attacks

21

COMP6131 Software Security Analysis 2025

Let us take a look at examples of the above vulnerabilities,
how to fix them and implement more secure programming
practices (e.g., using assertions)

22

COMP6131 Software Security Analysis 2025

Memory Leaks (A Vulnerable Example)
A memory leak occurs when dynamically allocated memory is never freed along a
program execution path.

1 typedef struct Node {

2 int data;

3 struct Node *next;

4 } Node;

5 typedef struct List {

6 struct Node *head;

7 } List;

8

9 List* create_list(int num){

10 List* list = new List();

11 list->head = new Node();

12 Node* current = list->head;

13 for(i = 0; i < num - 1; i++){

14 current = new Node();

15 current = current->next;

16 }

17 return list;

18 }

1 void free_list(List *l) {

2 Node* current = l->head;

3 while (current != NULL) {

4 node *next = current->next;

5 delete current;

6 current = next;

7 }

8 }

9

10 int main(){

11 List* l = create_list(10); // create a list of 10 nodes

12 // ... do something with the list

13 free_list(l); // deallocate the memory for the list

14 }

Do we have a bug in the above code?
If so, how do we fix the bug?

23

COMP6131 Software Security Analysis 2025

Memory Leaks (A Vulnerable Example)
A memory leak occurs when dynamically allocated memory is never freed along a
program execution path.

1 typedef struct Node {

2 int data;

3 struct Node *next;

4 } Node;

5 typedef struct List {

6 struct Node *head;

7 } List;

8

9 List* create_list(int num){

10 List* list = new List();

11 list->head = new Node();

12 Node* current = list->head;

13 for(i = 0; i < num - 1; i++){

14 current = new Node();

15 current = current->next;

16 }

17 return list;

18 }

1 void free_list(List *l) {

2 Node* current = l->head;

3 while (current != NULL) {

4 node *next = current->next;

5 delete current;

6 current = next;

7 }

8 }

9

10 int main(){

11 List* l = create_list(10); // create a list of 10 nodes

12 // ... do something with the list

13 free_list(l); // deallocate the memory for the list

14 }

Do we have a bug in the above code?
If so, how do we fix the bug?

23

COMP6131 Software Security Analysis 2025

Memory Leaks (A Vulnerable Example)
A memory leak occurs when dynamically allocated memory is never freed along a
program execution path.

1 typedef struct Node {

2 int data;

3 struct Node *next;

4 } Node;

5 typedef struct List {

6 struct Node *head;

7 } List;

8

9 List* create_list(int num){

10 List* list = new List();

11 list->head = new Node();

12 Node* current = list->head;

13 for(i = 0; i < num - 1; i++){

14 current = new Node();

15 current = current->next;

16 }

17 return list;

18 }

1 void free_list(List *l) {

2 Node* current = l->head;

3 while (current != NULL) {

4 node *next = current->next;

5 delete current;

6 current = next;

7 }

8 }

9

10 int main(){

11 List* l = create_list(10); // create a list of 10 nodes

12 // ... do something with the list

13 free_list(l); // deallocate the memory for the list

14 }

Do we have a bug in the above code?
If so, how do we fix the bug?

23

COMP6131 Software Security Analysis 2025

Memory Leaks (A Secure Example)
1 typedef struct Node {

2 int data;

3 struct Node *next;

4 } Node;

5 typedef struct List {

6 struct Node *head;

7 } List;

8

9 List* create_list(int num){

10 List* list = new List();

11 list->head = new Node();

12 Node* current = list->head;

13 for(i = 0; i < num - 1; i++){

14 current->next = new Node();

15 current = current->next;

16 }

17 return list;

18 }

1 void free_list(List *l) {

2 Node* current = l->head;

3 while (current != NULL) {

4 node *next = current->next;

5 delete current;

6 current = next;

7 }

8

9 }

10

11 int main(){

12 List* l = create_list(10); // create a list of 10 nodes

13 // ... do something with the list

14 free_list(l); // deallocate the memory for the list

15 }

24

COMP6131 Software Security Analysis 2025

Memory Leaks (A Secure Example)
1 typedef struct Node {

2 int data;

3 struct Node *next;

4 } Node;

5 typedef struct List {

6 struct Node *head;

7 } List;

8

9 List* create_list(int num){

10 List* list = new List();

11 list->head = new Node();

12 Node* current = list->head;

13 for(i = 0; i < num - 1; i++){

14 current->next = new Node();

15 current = current->next;

16 }

17 return list;

18 }

1 void free_list(List *l) {

2 Node* current = l->head;

3 while (current != NULL) {

4 node *next = current->next;

5 delete current;

6 current = next;

7 }

8 delete l;

9 }

10

11 int main(){

12 List* l = create_list(10); // create a list of 10 nodes

13 // ... do something with the list

14 free_list(l); // deallocate the memory for the list

15 l = nullptr; // avoid misuse later

16 }

25

COMP6131 Software Security Analysis 2025

Null Pointer Dereferences (A Vulnerable Example)
A NULL pointer dereference occurs when the application dereferences a pointer
that it expects to be valid, but is NULL, typically causing a crash or exit.

1 struct Student{

2 int id;

3 char* name;

4 } Student;

5 Student students[10]= {...};

6

7 Student* findStuRecord(int sID){

8 for(int i = 0; i < 10; i++){

9 if(students[i].id == sID)

10 return &students[i];

11 }

12 return nullptr;

13 }

1 int main(int argc, char **argv){

2 int stuID;

3 scanf("%d%c", &stuID);

4 Student* student = findStuRecord(stuID);

5 printf("%s\n", student->name);

6 }

Do we have a bug in the above code? If
so, where should we put the assertion to
stop the bug?

26

COMP6131 Software Security Analysis 2025

Null Pointer Dereferences (A Vulnerable Example)
A NULL pointer dereference occurs when the application dereferences a pointer
that it expects to be valid, but is NULL, typically causing a crash or exit.

1 struct Student{

2 int id;

3 char* name;

4 } Student;

5 Student students[10]= {...};

6

7 Student* findStuRecord(int sID){

8 for(int i = 0; i < 10; i++){

9 if(students[i].id == sID)

10 return &students[i];

11 }

12 return nullptr;

13 }

1 int main(int argc, char **argv){

2 int stuID;

3 scanf("%d%c", &stuID);

4 Student* student = findStuRecord(stuID);

5 printf("%s\n", student->name);

6 }

Do we have a bug in the above code? If
so, where should we put the assertion to
stop the bug?

26

COMP6131 Software Security Analysis 2025

Null Pointer Dereferences (A Secure Example)
A NULL pointer dereference occurs when the application dereferences a pointer
that it expects to be valid, but is NULL, typically causing a crash or exit.

1 struct Student{

2 int id;

3 char* name;

4 } Student;

5 Student students[10]= {...};

6

7 Student* findStuRecord(int sID){

8 for(int i = 0; i < 10; i++){

9 if(students[i].id == sID)

10 return &students[i];

11 }

12 return NULL;

13 }

1 int main(int argc, char **argv){

2 int stuID;

3 scanf("%d%c", &stuID);

4 Student* student = findStuRecord(stuID);

5 assert(student!=nullptr);

6 printf("%s\n", student->name);

7 }

27

COMP6131 Software Security Analysis 2025

Dangling references and use-after-frees
Dangling references are references that do not resolve to a valid memory object
(e.g., caused by a use-after-free).

28

COMP6131 Software Security Analysis 2025

Dangling References / Use-After-Frees (A Vulnerable Example)

Dangling references are references that do not resolve to a valid memory object
(e.g., caused by a use-after-free).

1 char* ptr = (char*)malloc(SIZE);

2 ...

3 if (err) {

4 abrt = 1;

5 free(ptr);

6 }

7 ...

8 if (abrt) {

9 logError("operation aborted before commit", ptr);

10 }

Do we have a bug in the above code? If so, how should we fix the bug?

29

COMP6131 Software Security Analysis 2025

Dangling References / Use-After-Frees (A Vulnerable Example)

Dangling references and wild references are references that do not resolve to a
valid destination

1 char* ptr = (char*)malloc(SIZE);

2 ...

3 if (err) {

4 abrt = 1;

5 free(ptr);

6 ptr = nullptr;

7 }

8 ...

9 if (abrt) {

10 assert(ptr != nullptr);

11 logError("operation aborted before commit", ptr);

12 }

30

COMP6131 Software Security Analysis 2025

Buffer Overflows

A buffer overflow occurs when the volume of data exceeds the storage capacity of the
memory buffer, so that the program attempting to write the data to the buffer overwrites
adjacent memory locations.

overflow−−−→ |buffer| ←−−−

31

COMP6131 Software Security Analysis 2025

Buffer Overflows (A Vulnerable Example)
A buffer overflow occurs when the volume of data exceeds the storage capacity of the
memory buffer, so that the program attempting to write the data to the buffer overwrites
adjacent memory locations.

1 void bufferRead() {

2 int n = 0;

3 int ret = scanf("%d", &n);

4 if (ret != 1 || n > 100) {

5 return;

6 }

7 char *p = (char *)malloc(n);

8 int y = n;

9 if (p == NULL) return;

10 p[y] = 'a';
11 free(p);

12 }

Do we have a bug in the above code? If so, where is the bug?

32

COMP6131 Software Security Analysis 2025

Buffer Overflows (A Secure Example)
A buffer overflow occurs when the volume of data exceeds the storage capacity of the
memory buffer, so that the program attempting to write the data to the buffer overwrites
adjacent memory locations.

1 void bufferRead() {

2 int n = 0;

3 int ret = scanf("%d", &n);

4 if (ret != 1 || n > 100) {

5 return;

6 }

7 char *p = (char *)malloc(n);

8 int y = n;

9 if (p == NULL) return;

10 assert(y < n);

11 p[y] = 'a';
12 free(p);

13 }

33

COMP6131 Software Security Analysis 2025

Integer Overflows
An integer overflow occurs when an arithmetic operation attempts to create a numeric
value that is outside of the range that can be represented with a given number of digits –
either higher than the maximum or lower than the minimum representable value.

Typical binary register widths for unsigned integers include
• 4 bits: maximum representable value 24 - 1 = 15
• 8 bits: maximum representable value 28 - 1 = 255
• 16 bits: maximum representable value 216 - 1 = 65,535
• 32 bits: maximum representable value 232 - 1 = 4,294,967,295 (the most common

width for personal computers as of 2005),
• 64 bits: maximum representable value 264 - 1 = 18,446,744,073,709,551,615 (the

most common width for personal computer CPUs, as of 2017),
• 128 bits: maximum representable value 2128 - 1 =

340,282,366,920,938,463,463,374,607,431,768,211,455

34

COMP6131 Software Security Analysis 2025

Integer Overflows
An integer overflow occurs when an arithmetic operation attempts to create a numeric
value that is outside of the range that can be represented with a given number of digits –
either higher than the maximum or lower than the minimum representable value.

Typical binary register widths for unsigned integers include
• 4 bits: maximum representable value 24 - 1 = 15
• 8 bits: maximum representable value 28 - 1 = 255
• 16 bits: maximum representable value 216 - 1 = 65,535
• 32 bits: maximum representable value 232 - 1 = 4,294,967,295 (the most common

width for personal computers as of 2005),
• 64 bits: maximum representable value 264 - 1 = 18,446,744,073,709,551,615 (the

most common width for personal computer CPUs, as of 2017),
• 128 bits: maximum representable value 2128 - 1 =

340,282,366,920,938,463,463,374,607,431,768,211,455
34

COMP6131 Software Security Analysis 2025

Integer Overflows
In C/C++, overflows of signed integer will cause undefined behavior. Overflows of
unsigned integer will cause a wraparound. For unsigned integers, when the value
exceeds the maximum value (2n for some n), the result is reduced to that value modulo 2n.

Here are some of C’s various integer types and the values (in standard library):

• INT MIN (the minimum value for an integer): -2,147,483,648 bits

• INT MAX (the maximum value for an integer): +2,147,483,647 bits

• UINT MAX (the maximum value for an unsigned integer): 4,294,967,295 bits

• UINT MAX + 1 = ?

• UINT MAX + 2 = ?

• UINT MAX + 3 = ?

35

COMP6131 Software Security Analysis 2025

Integer Overflows
In C/C++, overflows of signed integer will cause undefined behavior. Overflows of
unsigned integer will cause a wraparound. For unsigned integers, when the value
exceeds the maximum value (2n for some n), the result is reduced to that value modulo 2n.

Here are some of C’s various integer types and the values (in standard library):

• INT MIN (the minimum value for an integer): -2,147,483,648 bits

• INT MAX (the maximum value for an integer): +2,147,483,647 bits

• UINT MAX (the maximum value for an unsigned integer): 4,294,967,295 bits

• UINT MAX + 1 = ?

• UINT MAX + 2 = ?

• UINT MAX + 3 = ?

35

COMP6131 Software Security Analysis 2025

Integer Overflows
In C/C++, overflows of signed integer will cause undefined behavior but overflows of
unsigned integer will not. The resulting unsigned integer type is reduced modulo to the
number that is one greater than the largest value that can be represented by the resulting
type (modulo power of two, i.e., 2n where n is No. of bits).

Here are some of C’s various integer types and the values (in standard library):

• INT MIN (the minimum value for an integer): -2,147,483,648 bits

• INT MAX (the maximum value for an integer): +2,147,483,647 bits

• UINT MAX (the maximum value for an unsigned integer): 4,294,967,295 bits

• UINT MAX + 1 == 0

• UINT MAX + 2 == 1

• UINT MAX + 3 == 2

36

COMP6131 Software Security Analysis 2025

Integer Overflows
Compilers may exploit undefined behavior and optimize when there is an overflow of a
signed integer, producing code that you may not want!

1 signed int x ;

2 if(x > x + 1) // incorrect way to detect overflow

3 {

4 // handle potential overflow

5 }

1 signed int x ;

2 if (x > INT_MAX - 1) { // correct way

3 // handle potential overflow

4 }

The above is an incorrect way to detect integer overflow. x is a signed integer, and x + 1
overflows (e.g., x = INT MAX), which is undefined. The compiler is allowed to do anything,
e.g., optimize away the branch, produce incorrect results, or crash.

1 signed i = 1;

2 while (i > 0){ //Be careful using signed integers as bounds in loops and branches!

3 i *= 2;

4 }

The above behavior is undefined and when compiled under ‘-O3‘ using GCC (version
4.7.2 on Debian 4.7.2-5). It performs branch simplifications, producing an infinite loop.
https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

37

COMP6131 Software Security Analysis 2025

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

Integer Overflows
Compilers may exploit undefined behavior and optimize when there is an overflow of a
signed integer, producing code that you may not want!

1 signed int x ;

2 if(x > x + 1) // incorrect way to detect overflow

3 {

4 // handle potential overflow

5 }

1 signed int x ;

2 if (x > INT_MAX - 1) { // correct way

3 // handle potential overflow

4 }

The above is an incorrect way to detect integer overflow. x is a signed integer, and x + 1
overflows (e.g., x = INT MAX), which is undefined. The compiler is allowed to do anything,
e.g., optimize away the branch, produce incorrect results, or crash.

1 signed i = 1;

2 while (i > 0){ //Be careful using signed integers as bounds in loops and branches!

3 i *= 2;

4 }

The above behavior is undefined and when compiled under ‘-O3‘ using GCC (version
4.7.2 on Debian 4.7.2-5). It performs branch simplifications, producing an infinite loop.
https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

37

COMP6131 Software Security Analysis 2025

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

Integer Overflows
Compilers may exploit undefined behavior and optimize when there is an overflow of a
signed integer, producing code that you may not want!

1 signed int x ;

2 if(x > x + 1) // incorrect way to detect overflow

3 {

4 // handle potential overflow

5 }

1 signed int x ;

2 if (x > INT_MAX - 1) { // correct way

3 // handle potential overflow

4 }

The above is an incorrect way to detect integer overflow. x is a signed integer, and x + 1
overflows (e.g., x = INT MAX), which is undefined. The compiler is allowed to do anything,
e.g., optimize away the branch, produce incorrect results, or crash.

1 signed i = 1;

2 while (i > 0){ //Be careful using signed integers as bounds in loops and branches!

3 i *= 2;

4 }

The above behavior is undefined and when compiled under ‘-O3‘ using GCC (version
4.7.2 on Debian 4.7.2-5). It performs branch simplifications, producing an infinite loop.
https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

37

COMP6131 Software Security Analysis 2025

https://stackoverflow.com/questions/23889022/gcc-optimizations-based-on-integer-overflow

Integer Overflows (A Vulnerable Example)
1 int nresp = packet_get_int();

2

3 if (nresp > 0) {

4 response = xmalloc(nresp*sizeof(char*));

5

6 for (i = 0; i < nresp; i++)

7 response[i] = packet_get_string(NULL);

8 }

Do we have a bug in the above code? If so, where is the bug?

• An integer overflow that leads to a buffer overflow found in an older version of
OpenSSH (3.3):

• If nresp is greater than or equal to 1073741824 and sizeof(char*) is 4 (which is typical
of 32-bit systems), then nresp*sizeof(char*) results in an overflow. Therefore,
xmalloc() receives and allocates a small buffer. The subsequent loop causes a heap
buffer overflow, which may, in turn, be used by an attacker to execute arbitrary code.

38

COMP6131 Software Security Analysis 2025

Integer Overflows (A Vulnerable Example)
1 int nresp = packet_get_int();

2

3 if (nresp > 0) {

4 response = xmalloc(nresp*sizeof(char*));

5

6 for (i = 0; i < nresp; i++)

7 response[i] = packet_get_string(NULL);

8 }

Do we have a bug in the above code? If so, where is the bug?
• An integer overflow that leads to a buffer overflow found in an older version of

OpenSSH (3.3):

• If nresp is greater than or equal to 1073741824 and sizeof(char*) is 4 (which is typical
of 32-bit systems), then nresp*sizeof(char*) results in an overflow. Therefore,
xmalloc() receives and allocates a small buffer. The subsequent loop causes a heap
buffer overflow, which may, in turn, be used by an attacker to execute arbitrary code.

38

COMP6131 Software Security Analysis 2025

Integer Overflows (A Secure Example)

1 int nresp = packet_get_int();

2 assert(nresp < userDefinedSize);

3 if (nresp > 0) {

4 response = xmalloc(nresp*sizeof(char*));

5

6 for (i = 0; i < nresp; i++)

7 response[i] = packet_get_string(NULL);

8 }

Make sure the size received is under a
user budget.

1 int nresp = packet_get_int();

2

3 if (nresp > 0) {

4 assert(nresp <= userDefinedSize/sizeof(char

*));

5 response = xmalloc(nresp*sizeof(char*));

6

7 for (i = 0; i < nresp; i++)

8 response[i] = packet_get_string(NULL);

9 }

Make sure the malloc can safely allocate
memory under a user budget.

39

COMP6131 Software Security Analysis 2025

Integer Overflows (A Secure Example)

1 int nresp = packet_get_int();

2 assert(nresp < userDefinedSize);

3 if (nresp > 0) {

4 response = xmalloc(nresp*sizeof(char*));

5

6 for (i = 0; i < nresp; i++)

7 response[i] = packet_get_string(NULL);

8 }

Make sure the size received is under a
user budget.

1 int nresp = packet_get_int();

2

3 if (nresp > 0) {

4 assert(nresp <= userDefinedSize/sizeof(char

*));

5 response = xmalloc(nresp*sizeof(char*));

6

7 for (i = 0; i < nresp; i++)

8 response[i] = packet_get_string(NULL);

9 }

Make sure the malloc can safely allocate
memory under a user budget.

39

COMP6131 Software Security Analysis 2025

Division by Zero (A Vulnerable Example)

The product divides a value by zero. The C standard (C11 6.5.5) states that
dividing by zero has undefined behavior for either integer or floating-point
operands. It can cause program crash or miscompilation by compilers.

1 unsigned computeAverageResponseTime (unsigned totalTime, unsigned numRequests)

2 {

3 return totalTime / numRequests;

4 }

Is the above code secure?

40

COMP6131 Software Security Analysis 2025

Division by Zero (A Secure Example)

The product divides a value by zero. The C standard (C11 6.5.5) states that
dividing by zero has undefined behavior for either integer or floating-point
operands. It can cause program crash or miscompilation by compilers.

1 unsigned computeAverageResponseTime (unsigned totalTime, unsigned numRequests)

2 {

3 assert(numRequests > 0);

4 return totalTime / numRequests;

5 }

41

COMP6131 Software Security Analysis 2025

Tainted Information Flow (A Vulnerable Example)

Malicious user inputs may cause unexpected program behaviors, information
leakage or attacks when executing a target program.

1 void main(int argc, char **argv)

2 {

3 char *pMsg = packet_get_string();

4 ParseMsg((LOGIN_MSG_BODY *)pMsg);

5 }

6

7 void ParseMsg(LOGIN_MSG_BODY *stLoginMsgBody)

8 {

9 for (int ulIndex = 0; ulIndex < stLoginMsgBody->usLoginPwdLen; ulIndex++) {

10 // do something

11 }

12 }

Do we have a bug in the above code? If so, where is the bug?

42

COMP6131 Software Security Analysis 2025

Tainted Information Flow (A Vulnerable Example)

Malicious user inputs may cause unexpected program behaviors, information
leakage or attacks when executing a target program.

1 void main(int argc, char **argv)

2 {

3 char *pMsg = packet_get_string();

4 ParseMsg((LOGIN_MSG_BODY *)pMsg);

5 }

6

7 void ParseMsg(LOGIN_MSG_BODY *stLoginMsgBody)

8 {

9 for (int ulIndex = 0; ulIndex < stLoginMsgBody->usLoginPwdLen; ulIndex++) {

10 // do something

11 }

12 }

Do we have a bug in the above code? If so, where is the bug?

42

COMP6131 Software Security Analysis 2025

Tainted Information Flow (A Secure Example)

1 void main(int argc, char **argv)

2 {

3 char *pMsg = packet_get_string();

4 ParseMsg((LOGIN_MSG_BODY *)pMsg);

5 }

6

7 void ParseMsg(LOGIN_MSG_BODY *stLoginMsgBody)

8 {

9 assert(stLoginMsgBody->usLoginPwdLen < userDefinedSize);

10 for (int ulIndex = 0; ulIndex < stLoginMsgBody->usLoginPwdLen; ulIndex++) {

11 // do something

12 }

13 }

User input can cause long loops to hang the target program.

43

COMP6131 Software Security Analysis 2025

Code Injection (A Vulnerable Example)

Code injection is the exploitation of a computer bug that is caused by processing invalid
data. The result of successful code injection can be disastrous, for example, by disclosing
confidential information.

1 string user_id, command;

2 command = "cat user_info/";

3 cin >> user_id; // user_id is an integer

4 system(command + user_id);

Is the above code secure?

• Before system(), we did not check the legality of user id. first, if x is a piece of
dangerous code, it will be executed in system() and return harmful results.

• For example, if user types ”05 && ipconfig”, it will disclose ip address.

44

COMP6131 Software Security Analysis 2025

Code Injection (A Vulnerable Example)

Code injection is the exploitation of a computer bug that is caused by processing invalid
data. The result of successful code injection can be disastrous, for example, by disclosing
confidential information.

1 string user_id, command;

2 command = "cat user_info/";

3 cin >> user_id; // user_id is an integer

4 system(command + user_id);

Is the above code secure?

• Before system(), we did not check the legality of user id. first, if x is a piece of
dangerous code, it will be executed in system() and return harmful results.

• For example, if user types ”05 && ipconfig”, it will disclose ip address.

44

COMP6131 Software Security Analysis 2025

Code Injection (A Secure Example)

To detect the bug, we need to make sure after appending $user id will not generate
another command.

1 string user_id, command;

2 command = "cat user_info/";

3 cin>>user_id; // what if user input "05 && ipconfig"

4 assert(isdigit(user id));

5 system(command + user_id);

In the assert call, we should check whether user id consists entirely of numeric characters,
so that another malicious command would not be injected.

45

COMP6131 Software Security Analysis 2025

Format String

The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char **argv){ // assuming at least two arguments (argc > 1)

3 printf("%s\n", argv[1]);

4 printf(argv[1]);

5 }

Which printf is safe and which printf is vulnerable? why?

• The line printf("%s", argv[1]); is safe, if you compile the program and run it:

• ./example "Hello World %s%s%s%s%s%s"
• Output: "Hello World %s%s%s%s%s%s"

46

COMP6131 Software Security Analysis 2025

Format String

The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char **argv){ // assuming at least two arguments (argc > 1)

3 printf("%s\n", argv[1]);

4 printf(argv[1]);

5 }

Which printf is safe and which printf is vulnerable? why?

• The line printf("%s", argv[1]); is safe, if you compile the program and run it:

• ./example "Hello World %s%s%s%s%s%s"

• Output: "Hello World %s%s%s%s%s%s"

46

COMP6131 Software Security Analysis 2025

Format String

The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char **argv){ // assuming at least two arguments (argc > 1)

3 printf("%s\n", argv[1]);

4 printf(argv[1]);

5 }

Which printf is safe and which printf is vulnerable? why?

• The line printf("%s", argv[1]); is safe, if you compile the program and run it:

• ./example "Hello World %s%s%s%s%s%s"
• Output: "Hello World %s%s%s%s%s%s"

46

COMP6131 Software Security Analysis 2025

Format String
The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char **argv){

3 printf("%s\n", argv[1]);

4 printf(argv[1]);

5 }

Which printf is safe and which printf is vulnerable? why?
• The line printf(argv[1]); in the example is vulnerable
• ./example "Hello World %s%s%s%s%s%s"

• Output: program crash.
• The printf in the second line will interpret the %s%s%s%s%s%s in the input string as a

reference to string pointers. It will try to interpret every %s as a pointer to a string,
which will get to an invalid address, and attempting to access it will likely cause the
program to crash

47

COMP6131 Software Security Analysis 2025

Format String
The Format String exploit occurs when the submitted data of an input string is evaluated
as a command by the application.

1 #include <stdio.h>

2 void main(int argc, char **argv){

3 printf("%s\n", argv[1]);

4 printf(argv[1]);

5 }

• It can be more than a crash! An attacker can also use this to get information. For
example, running: ./example "Hello World %p %p %p %p %p %p"

• First printf output: Hello World %p %p %p %p %p %p

• Second printf output: Hello World 000E133E 000E133E 0057F000 CCCCCCCC

CCCCCCCC CCCCCCCC

• Causing possible memory address leakage and exploit

https://cs155.stanford.edu/papers/formatstring-1.2.pdf

https://robin-sandhu.medium.com/understanding-the-format-string-vulnerability-b2957630d886
48

COMP6131 Software Security Analysis 2025

https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://robin-sandhu.medium.com/understanding-the-format-string-vulnerability-b2957630d886

SQL Injection (A Vulnerable Example)

The attacker can add additional SQL statements at the end of the query
statements defined in advance (e.g., in the web application).

1 txtUserId = getRequestString("UserId");

2 txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

Is the above code vulnerable? Why?

• The original purpose of the code was to create an SQL statement to select a user,
with a given user id.

• If there is nothing to prevent a user from entering ”wrong” input, the user can enter
some ”smart” input like this: "105 OR 1=1".

• ”OR 1==1” will make logical expression after WHERE always true. Then the sql
database will return all the items from the Users table.

49

COMP6131 Software Security Analysis 2025

SQL Injection (A Vulnerable Example)

The attacker can add additional SQL statements at the end of the query
statements defined in advance (e.g., in the web application).

1 txtUserId = getRequestString("UserId");

2 txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

Is the above code vulnerable? Why?
• The original purpose of the code was to create an SQL statement to select a user,

with a given user id.

• If there is nothing to prevent a user from entering ”wrong” input, the user can enter
some ”smart” input like this: "105 OR 1=1".

• ”OR 1==1” will make logical expression after WHERE always true. Then the sql
database will return all the items from the Users table.

49

COMP6131 Software Security Analysis 2025

SQL Injection(A Secure Example)

To detect the bug, we need to verify the user’s input.

1 txtUserId = "105 OR 1=1";

2 assert(isdigit(txtUserId));

3 txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

Assuming that user id is an integer, we should assert the user’s input is exactly an integer.

50

COMP6131 Software Security Analysis 2025

Side-Channel Attacks (A Vulnerable Example)
1 bool insecureCmp(char *ca, char *cb, int length)

2 {

3 for (int i = 0; i < length; i++)

4 if (ca[i] != cb[i])

5 return false;

6 return true;

7 }

• The above code demonstrates a typical insecure string comparison which
stops testing as soon as a character doesn’t match.
• Assume a computer that takes 1 ms to check each character of a password

using the above function to validate passwords.
• If the attacker guesses a completely wrong password, it will take 1 ms. Once

they get one character right, it takes 2 ms. Two correct characters take 3 ms,
and so on.

51

COMP6131 Software Security Analysis 2025

Side-Channel Attacks (A Vulnerable Example)
1 bool insecureCmp(char *ca, char *cb, int length)

2 {

3 for (int i = 0; i < length; i++)

4 if (ca[i] != cb[i])

5 return false;

6 return true;

7 }

• The above code demonstrates a typical insecure string comparison which
stops testing as soon as a character doesn’t match.

• Assume a computer that takes 1 ms to check each character of a password
using the above function to validate passwords.
• If the attacker guesses a completely wrong password, it will take 1 ms. Once

they get one character right, it takes 2 ms. Two correct characters take 3 ms,
and so on.

51

COMP6131 Software Security Analysis 2025

Side-Channel Attacks (A Vulnerable Example)
1 bool insecureCmp(char *ca, char *cb, int length)

2 {

3 for (int i = 0; i < length; i++)

4 if (ca[i] != cb[i])

5 return false;

6 return true;

7 }

• The above code demonstrates a typical insecure string comparison which
stops testing as soon as a character doesn’t match.

• Assume a computer that takes 1 ms to check each character of a password
using the above function to validate passwords.
• If the attacker guesses a completely wrong password, it will take 1 ms. Once

they get one character right, it takes 2 ms. Two correct characters take 3 ms,
and so on.

51

COMP6131 Software Security Analysis 2025

Side-Channel Attacks (A Secure Example)
1 bool insecureCmp(char *ca, char *cb, int length)

2 {

3 for (int i = 0; i < length; i++)

4 if (ca[i] != cb[i])

5 return false;

6 return true;

7 }

1 # String comparison time: 1ms

2 'aaaaaaaaaaaaaaaaa' == 'V1cHt2S67DADJIm9s'
3

4 # String comparison time: 1ms

5 'baaaaaaaaaaaaaaaa' == 'V1cHt2S67DADJIm9s'
6

7 # String comparison time: 2ms

8 'Vaaaaaaaaaaaaaaaa' == 'V1cHt2S67DADJIm9s'
9

10 # String comparison time: 3ms

11 'V1aaaaaaaaaaaaaaaa' == 'V1cHt2S67DADJIm9s'
12 # ...

52

COMP6131 Software Security Analysis 2025

Side-Channel Attacks (A Secure Example)

1 bool constTimeCmp(char *ca, char *cb, int length)

2 {

3 bool result = true;

4 for (int i = 0; i < length; i++)

5 result &= (ca[i] == cb[i]);

6 return result;

7 }

• The above secure version runs in constant-time by testing all characters and
using a bitwise operation to accumulate the result.

53

COMP6131 Software Security Analysis 2025

Side-Channel Attacks (A Secure Example)

1 bool constTimeCmp(char *ca, char *cb, int length)

2 {

3 bool result = true;

4 int i;

5 for (i = 0; i < length; i++)

6 result &= (ca[i] == cb[i]);

7 assert(length == i); // make sure the comparison times is proportional to the length.

8 return result;

9 }

• Make sure the each time calling the comparison function always costs
the same time (constant-time comparison)
• The above secure version runs in constant-time by testing all characters and

using a bitwise operation to accumulate the result.

54

COMP6131 Software Security Analysis 2025

What’s Next?

• (1) Configure your programming environment https://github.com/
SVF-tools/Software-Security-Analysis/wiki/Configure-IDE

• (2) Write, run and debug your ‘hello world‘ C++ program within your
configured IDE.
• (3) Revisit and practice C++ programming (more about programming

practices in our lab exercise)
• (4) Start working on Quiz-1 and Lab-1.

55

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Software-Security-Analysis/wiki/Configure-IDE
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Configure-IDE

