1. Hypotrochoids

A *hypotrochoid* is the curve obtained by tracing the positions taken by a point P rigidly attached to a circle C_2 of centre C_2 and radius r, P being at a distance d from C_2, with C_2 rolling around the inside of another circle C_1 of centre C_1 and radius R. To compute the equation of the curve, one assumes that C_1 is located at the origin of the plane, so has coordinates $(0, 0)$, and C_1, C_2 and P are horizontally aligned, in that order from left to right, as shown in the following picture.

As C_2 rotates clockwise and moves anticlockwise around the inside of C_1, when C_1C_2 has gone from an angle of 0 to a positive angle of θ, and C_2P from an angle of 0 to a negative angle of ψ, the point of contact T between both circles has travelled the same distance along both circles—represented in red in the picture below—, namely, θR on C_1, and $(\theta - \psi)r$ on C_2. Hence:

$$\psi = -\frac{R - r}{r} \theta$$

At this stage, since $\overrightarrow{C_1P} = \overrightarrow{C_1C_2} + \overrightarrow{C_2P}$, the point P has coordinates:

$$x = (R - r) \cos(\theta) + d \cos(-\psi)$$
$$y = (R - r) \sin(\theta) + d \sin(-\psi)$$

that is:

$$x = (R - r) \cos(\theta) + d \cos\left(\frac{R - r}{r} \theta\right)$$
$$y = (R - r) \sin(\theta) - d \sin\left(\frac{R - r}{r} \theta\right)$$

Date: Session 2, 2016.
Note that P can “stick out” of C_2, that is, d can be larger than r, as shown in the following picture, which also illustrates that C_2 can be larger than C_1, that is, r can be greater than R; that does not change the above reasoning and the equations still hold.

The period of a hypotrochoid is the number of rolls of C_2 needed for P to get back to its original position. It is equal to the least strictly positive integer ρ such that $\rho \times 2\pi r$ is a multiple of $2\pi R$; hence it is equal to $\frac{r}{\gcd(r,R)}$.

2. Epitrochoids

If we let C_2 roll around the outside rather than the inside of C_1, then the curve obtained by tracing the positions taken by P is called an *epitrochoid*. To compute the equation of the curve, one assumes that C_1, C_2 and P are horizontally aligned, with C_2 to the right of C_1 and with P to the left of C_2, and also to the left of C_1 in case d is greater than $R + r$; the following picture illustrates the case where $r < R$ and $d < r$.

The reasoning that yields the equations for hypotrochoids can be immediately adapted to epitrochoids and result in the following equations:

\[
\begin{align*}
x &= (R + r) \cos(\theta) - d \cos\left(\frac{R + r}{r} \theta\right) \\
y &= (R + r) \sin(\theta) - d \sin\left(\frac{R + r}{r} \theta\right)
\end{align*}
\]

The period of an epitrochoid is also equal to $\frac{r}{\gcd(r,R)}$.

3. Particular cases

Ellipse, deltoid, astroid, nephroid, cardioid and *roses* are amongst the following pictures of epitrochoids (with a green filling) and hypotrochoids (with a yellow filling).
The following table shows how ellipse, deltoid, astroid, nephroid and a few other particular cases are obtained. When d is equal to r, hypotrochoids are also called hypocycloids, and epitrochoids are also called epicycloids.

<table>
<thead>
<tr>
<th>Hypotrochoids</th>
<th>Epitrochoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r = \frac{R}{2}$</td>
<td>$r = \frac{R}{2}$, $\frac{2R}{3}$, $\frac{3R}{4}$</td>
</tr>
<tr>
<td>$d = r$ ellipse</td>
<td>deltoid astroid nephroid cardioid nephroid cardioid</td>
</tr>
<tr>
<td>$d = 0$ segment</td>
<td></td>
</tr>
<tr>
<td>Any d</td>
<td></td>
</tr>
</tbody>
</table>

To be complete, one should let R be ∞; then C_1 is a line and the associated curves are called trochoids, with cycloids as a particular case when $d = r$...

COMP9021 Principles of Programming