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Where are we now?

• We’ve done a whirlwind tour of perception and 
action 

• Now moving up to planing and problem solving 

• and the kind of learning that goes with them



Why do we need symbols?
• How do we ask “where is Tim’s office”? 

• How do we know that if we want to get a cold drink, we should find the 
fridge and it’s probably in the kitchen?
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Automated Reasoning

• Expressions in a formal language conform to 
unambiguous rules of construction. 

• Inferences are drawn by following strict laws for 
manipulating expressions in a formal language 

• The language we use most often is clausal form 
logic.



Propositional Calculus
• A propositional constant is a symbol (like p, q, r, ...) that stands 

for some like "Sydney is a city”. 

• Propositions are atomic formulae. 

• A well-formed (wff) formula is 

• an atom, 𝛹 

• the negation of a wff, ¬𝛹 

• the disjunction (or) of a pair of wffs, 𝛹 ∨ 𝛷 

• Everything else can be derived



Derived Expressions

• 𝛹 ∧ 𝛷 is defined as ¬(¬𝛹 ∨ ¬𝛷) 

• 𝛹 ⊃ 𝛷 is defined as ¬𝛹 ∨ 𝛷 

• 𝛹 ≣ 𝛷 is defined as (𝛹 ⊃ 𝛷) ∧ (𝛷 ⊃ 𝛹)



Predicate Calculus

• Propositional calculus cannot deal with statements 
of generality like, 

'All men are mortal' 

• To do this, we need predicates, arguments, 
variables and quantifiers. eg.



• In clausal form, positive literals are placed to the left of 
an arrow symbol and negative atoms to the right, e.g. 

• In general, a clause is an expression of the form: 

• The literals on the left are disjoined conclusions. 

• The literals on the right are conjoined conditions.

Clausal Form



• A Horn clause is one which only has a single positive 
literal, eg. 

• The programming language, Prolog, consists of Horn 
clause definitions, eg. 

on(a, b). 
on(b, c). 
above(X, Y) :- on(X, Y). 
above(X, Y) :- on(Z, Y), above(X, Z).

Horn Clauses



Resolution
• To prove p follows from some theory, T, assume ¬p and then try to derive a 

contradiction from its conjunction with T.

• Resolution requires a pattern matching operation, called unification.

• When matching literals, we look for variable substitutions that will make the two 
expressions identical. Eg.

runs_faster_than(X, zeno)

runs_faster_than(tortoise, Y)

are identical under the substitution {X/tortoise, Y/zeno}



Resolving Clauses
• A clause that contains no variables is called a ground clause.

• To resolve two non-ground clauses, you must find a unifier for 
complimentary literals. Eg.

{beats_in_race(X,  zeno),  ¬ younger_than(X, zeno)}

and

{¬ beats_in_race(tortoise, Y),  ¬ philosopher(Y)}

have unifier n = {X/tortoise, Y/zeno} and generate the resolvent

{¬ philosopher(zeno),  ¬ younger_than(tortoise, zeno)} 



Proofs
• We can prove a formula, p, if we can derive it from a theory,T, by a sequence of 

resolution steps.

Written as T  ⊢  p.

• If the theory is very large, there may be many ways of deriving a proof.

• How can we find a short derivation?

• We try a proof by refutation, ie. add negation of goal to theory and show that 
the new theory is inconsistent, ie. implies false.

• The empty clause, {}, is interpreted as false. So if theory derives false, we have 

an inconsistent theory.



A Prolog Proof Tree

:- above(a, c). above(X, Y) :- on(Z, Y), above(X, Z).

on(b, c).

above(X, Y) :- on(X, Y).

on(a,  b).

{}

:- above(a, b).

:- on(Z, c), above(a, Z).

:- on(a, b).

on(a, b). 
on(b, c). 
above(X, Y) :- on(X, Y). 
above(X, Y) :- on(Z, Y), above(X, Z).



Resolution Search

• Resolution uses backward chaining to focus search 
for clauses to resolve. 

• There are many refinements to this search. 

• We will stick to the Prolog method which resolves 
clauses and their literals in input order, ie, top-to-
bottom, left-to-right.



Soundness and Completeness

• A proof procedure is sound if every formula it derives is true. I.e. 
it cannot prove something it shouldn't. 

• A proof procedure is complete if it can derive every thing that is 
possible to derive from a theory. Ie. There is no true statement 
that it cannot prove. 

• Decidability means that we can always show if a proposition 
follows from a theory. 

• Prolog's proof procedure is sound and complete for Horn 
clauses. 

• Unrestricted first-order logic is undecidable.


