Knowledge Representation
and Reasoning

COMP3431 Robot Software Architectures

A Three-Level Architecture

[Game—(iontroller & b4 J
[Roles (Robot-behaviour, eg Goalie, Striker, Supporter)]

I

[Skills (localise, position, find-ball, track-ball, get-behind-ball, kick-ball, getup) }

I I

$ State Estimation Mg KActuation (head-\

bl
Field-State + Robot-State :.5 movement, leg/

[¢ arm-movement,
camera-switching,
[Sensing (cameras, IR, hall-effect, joint-angles, speakers, LEDs,

foot-sensors, IMU, bumpers, sonar, wireless) \ wireless) /

1 |

Environment (this robot, ball, other robots) J

Where are we now?

 We've done a whirlwind tour of perception and
action

* Now moving up to planing and problem solving

e and the kind of learning that goes with them

Why do we need symbols?

e How do we ask “where is Tim’s office”?

 How do we know that if we want to get a cold drink, we should find the
fridge and it's probably in the kitchen?

Kitchen

Automated Reasoning

e Expressions in a formal language conform to
unambiguous rules of construction.

* Inferences are drawn by following strict laws for
manipulating expressions in a formal language

* The language we use most often is clausal form
logic.

Propositional Calculus

A propositional constant is a symbol (like p, g, 1, ...) that stands
for some like "Sydney is a city”.

Propositions are atomic formulae.
A well-formed (wff) formula is

e an atom, ¥

e the negation of a wif, =¥

e the disjunction (or) of a pair of wffs, ¥ v @

Everything else can be derivead

Derived Expressions

e Y A isdefined as =(-¥ v =)

e Y > @ isdefinedas =¥ v P

e Y=0@isdefinedas (¥ > d) A (P> V)

Predicate Calculus

* Propositional calculus cannot deal with statements
of generality like,

'All men are mortal’

* Jo do this, we need predicates, arguments,
variables and quantifiers. eg.

(VX)) man(X) omortal(X))

Clausal Form

In clausal form, positive literals are placed to the left of
an arrow symbol and negative atoms to the right, e.g.

p4<p
pP4<q

In general, a clause is an expression of the form:

P> sPn (—ql,. -4,

The literals on the left are disjoined conclusions.

The literals on the right are conjoined conditions.

Horn Clauses

A Horn clause is one which only has a single positive
literal, eq.

P <« qys---2qp

e The programming language, Prolog, consists of Horn
clause definitions, eqg.

on(a, b).
on(b, c).
above(X, Y):-on(X,Y).
above(X, Y) :-on(Z, Y), above(X, 2).

Resolution

- To prove p follows from some theory, T, assume —p and then try to derive a

contradiction from its conjunction with T.
Resolution requires a pattern matching operation, called unification.

- When matching literals, we look for variable substitutions that will make the two

expressions identical. Eg.
runs_faster_than(X, zeno)
runs_faster_than(tortoise, Y)

are identical under the substitution {X/tortoise, Y/zeno}

Resolving Clauses

- A clause that contains no variables is called a ground clause.

- To resolve two non-ground clauses, you must find a unifier for
complimentary literals. Eqg.

{beats_in_race(X, zeno), - younger_than(X, zeno)}
and
{—~ beats_in_race(tortoise, Y), - philosopher(Y)}
have unifier n = {X/tortoise, Y/zeno} and generate the resolvent

{— philosopher(zeno), - younger_than(tortoise, zeno)}

Proofs

- We can prove a formula, p, if we can derive it from a theory, T, by a sequence of

resolution steps.

Writtenas T +~ p.

- If the theory is very large, there may be many ways of deriving a proof.

- How can we find a short derivation?

- We try a proof by refutation, ie. add negation of goal to theory and show that

the new theory is inconsistent, ie. implies false.

- The empty clause, {}, is interpreted as false. So if theory derives false, we have

an inconsistent theory.

on(a, b).

A Prolog Proof Tree v

above(X, Y) :- on(X, Y).
above(X, Y) :-on(Z, YY), above(X, Z).

:— above(a, c). above (X, Y) :- on(Z, Y), above(X, Z).

t— on(z

oo e

, ¢), above(a, 7). on(b, c).

e

:— above(a, b). above (X, Y) :- on(X, Y).

t— on(a

{

oo e

, b). on(a, b).

I

}

Resolution Search

e Resolution uses backward chaining to focus search
for clauses to resolve.

* There are many refinements to this search.

* We will stick to the Prolog method which resolves
clauses and their literals in input order, ie, top-to-
bottom, left-to-right.

Soundness and Completeness

* A proof procedure is sound if every formula it derives is true. |.e.
It cannot prove something it shouldn't.

« A proof procedure is complete if it can derive every thing that is
possible to derive from a theory. le. There is no true statement
that it cannot prove.

e Decidability means that we can always show if a proposition
follows from a theory.

* Prolog's proof procedure is sound and complete for Horn
clauses.

« Unrestricted first-order logic is undecidable.

