
Knowledge Representation
and Reasoning

COMP3431 Robot Software Architectures

A Three-Level Architecture

1

2

3

Where are we now?

• We’ve done a whirlwind tour of perception and
action

• Now moving up to planing and problem solving

• and the kind of learning that goes with them

Why do we need symbols?
• How do we ask “where is Tim’s office”?

• How do we know that if we want to get a cold drink, we should find the
fridge and it’s probably in the kitchen?

Kitchen

Living
Room

Bed 
room Bath 

room

Fridge

Oven

Automated Reasoning

• Expressions in a formal language conform to
unambiguous rules of construction.

• Inferences are drawn by following strict laws for
manipulating expressions in a formal language

• The language we use most often is clausal form
logic.

Propositional Calculus
• A propositional constant is a symbol (like p, q, r, ...) that stands

for some like "Sydney is a city”.

• Propositions are atomic formulae.

• A well-formed (wff) formula is

• an atom, 𝛹

• the negation of a wff, ¬𝛹

• the disjunction (or) of a pair of wffs, 𝛹 ∨ 𝛷

• Everything else can be derived

Derived Expressions

• 𝛹 ∧ 𝛷 is defined as ¬(¬𝛹 ∨ ¬𝛷)

• 𝛹 ⊃ 𝛷 is defined as ¬𝛹 ∨ 𝛷

• 𝛹 ≣ 𝛷 is defined as (𝛹 ⊃ 𝛷) ∧ (𝛷 ⊃ 𝛹)

Predicate Calculus

• Propositional calculus cannot deal with statements
of generality like,

'All men are mortal'

• To do this, we need predicates, arguments,
variables and quantifiers. eg.

• In clausal form, positive literals are placed to the left of
an arrow symbol and negative atoms to the right, e.g.

• In general, a clause is an expression of the form:

• The literals on the left are disjoined conclusions.

• The literals on the right are conjoined conditions.

Clausal Form

• A Horn clause is one which only has a single positive
literal, eg.

• The programming language, Prolog, consists of Horn
clause definitions, eg.

on(a, b).
on(b, c).
above(X, Y) :- on(X, Y).
above(X, Y) :- on(Z, Y), above(X, Z).

Horn Clauses

Resolution
• To prove p follows from some theory, T, assume ¬p and then try to derive a

contradiction from its conjunction with T.

• Resolution requires a pattern matching operation, called unification.

• When matching literals, we look for variable substitutions that will make the two
expressions identical. Eg.

runs_faster_than(X, zeno)

runs_faster_than(tortoise, Y)

are identical under the substitution {X/tortoise, Y/zeno}

Resolving Clauses
• A clause that contains no variables is called a ground clause.

• To resolve two non-ground clauses, you must find a unifier for
complimentary literals. Eg.

{beats_in_race(X, zeno), ¬ younger_than(X, zeno)}

and

{¬ beats_in_race(tortoise, Y), ¬ philosopher(Y)}

have unifier n = {X/tortoise, Y/zeno} and generate the resolvent

{¬ philosopher(zeno), ¬ younger_than(tortoise, zeno)}

Proofs
• We can prove a formula, p, if we can derive it from a theory,T, by a sequence of

resolution steps.

Written as T ⊢ p.

• If the theory is very large, there may be many ways of deriving a proof.

• How can we find a short derivation?

• We try a proof by refutation, ie. add negation of goal to theory and show that
the new theory is inconsistent, ie. implies false.

• The empty clause, {}, is interpreted as false. So if theory derives false, we have

an inconsistent theory.

A Prolog Proof Tree

:- above(a, c). above(X, Y) :- on(Z, Y), above(X, Z).

on(b, c).

above(X, Y) :- on(X, Y).

on(a, b).

{}

:- above(a, b).

:- on(Z, c), above(a, Z).

:- on(a, b).

on(a, b).
on(b, c).
above(X, Y) :- on(X, Y).
above(X, Y) :- on(Z, Y), above(X, Z).

Resolution Search

• Resolution uses backward chaining to focus search
for clauses to resolve.

• There are many refinements to this search.

• We will stick to the Prolog method which resolves
clauses and their literals in input order, ie, top-to-
bottom, left-to-right.

Soundness and Completeness

• A proof procedure is sound if every formula it derives is true. I.e.
it cannot prove something it shouldn't.

• A proof procedure is complete if it can derive every thing that is
possible to derive from a theory. Ie. There is no true statement
that it cannot prove.

• Decidability means that we can always show if a proposition
follows from a theory.

• Prolog's proof procedure is sound and complete for Horn
clauses.

• Unrestricted first-order logic is undecidable.

