
9. Parameter Treewidth

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Contents

1 Algorithms for trees 1

2 Tree decompositions 2

3 Monadic Second Order Logic 4

4 Dynamic Programming over Tree Decompositions 6
4.1 Sat . 7
4.2 CSP . 8

5 Further Reading 8

1 Algorithms for trees

Exercise
Recall: An independent set of a graph G = (V,E) is a set of vertices S ⊆ V such that G[S] has no edge.

#Independent Sets on Trees

Input: A tree T = (V,E)
Output: The number of independent sets of T .

• Design a polynomial time algorithm for #Independent Sets on Trees

Solution

• Select an arbitrary root r of T

• Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree Tx rooted at x the
values

– #in(x): the number of independent sets of Tx containing x, and

– #out(x): the number of independent sets of Tx not containing x.

• If x is a leaf, then #in(x) = #out(x) = 1

• Otherwise,

#in(x) = Πy∈children(x) #out(y) and

#out(x) = Πy∈children(x) (#in(y) + #out(y))

• The final result is #in(r) + #out(r)

1

Exercise
Recall: A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such that NG[S] = V .

#Dominating Sets on Trees

Input: A tree T = (V,E)
Output: The number of dominating sets of T .

• Design a polynomial time algorithm for #Dominating Sets on Trees

Solution

• Select an arbitrary root r of T

• Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree Tx rooted at x the
values

– #in(x): the number of dominating sets of Tx containing x,

– #outDom(x): the number of dominating sets of Tx not containing x, and

– #outNd(x): the number of vertex subsets of Tx dominating V (Tx) \ {x}.

• If x is a leaf, then #in(x) = #outNd(x) = 1 and #outDom(x) = 0.

• Otherwise,

#in(x) = Πy∈children(x) (#in(y) + #outDom(y) + #outNd(y)),

#outDom(x) = Πy∈children(x) (#in(y) + #outDom(y))

−Πy∈children(x) #outDom(y)

#outNd(x) = Πy∈children(x) #outDom(y)

• The final result is #in(r) + #outDom(r)

2 Tree decompositions

Algorithms using graph decompositions
how to parameterize (2)

Decompositions

• Idea: decompose the problem
into subproblems, and
combine solutions to
subproblems to a global
solution

• Parameter: overlap between
subproblems

• Induced width or treewidth of
constraints networks [Dechter,
Pearl ’89]

• hypertree width [Gottlob, Leone,
Scarchello ‘02]

15

Idea: decompose the problem into sub-
problems and combine solutions to sub-
problems to a global solution.

Parameter: overlap between subprob-
lems.

Tree decompositions (by example)

• A graph G

a

b

c d

e
ff

h

g

i
j

k

2

• A tree decomposition of G

a, b, ca, b, c d, e, f d, f, h

f, g

d, e, f d, f , h

f, g

c, d, e h, i

i, j

i, k

Conditions: covering and connectedness.

Tree decomposition (more formally)

• Let G be a graph, T a tree, and γ a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets γ(t) “bags”.

• The pair (T, γ) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v ∈ γ(t).

2. For every edge vw of G there exists a node t of T such that v, w ∈ γ(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then γ(t1) ∩ γ(t3) ⊆ γ(t2)
(“connectedness”).

Treewidth

• The width of a tree decomposition (T, γ) is defined as the maximum |γ(t)| − 1 taken over all nodes t of T .

• The treewidth tw(G) of a graph G is the minimum width taken over all its tree decompositions.

Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• Consider a tree decomposition (T, γ) of a graph G and two adjacent nodes i, j in T . Let Ti and Tj denote
the two trees obtained from T by deleting the edge ij, such that Ti contains i and Tj contains j. Then, every
vertex contained in both

⋃
a∈V (Ti)

γ(a) and
⋃

b∈V (Tj)
γ(b) is also contained in γ(i) ∩ γ(j).

• The complete graph on n vertices has treewidth n− 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that Kr ⊆ γ(t).

Complexity of Treewidth

Treewidth
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have treewidth at most k?

• Treewidth is NP-complete.

• Treewidth is FPT, due to a kO(k3) · |V | time algorithm by [Bodlaender ’96]

Easy problems for bounded treewidth

• Many graph problems that are polynomial time solvable on trees are FPT with parameter treewdith.

• Two general methods:

– Dynamic programming : compute local information in a bottom-up fashion along a tree decomposition

– Monadic Second Order Logic: express graph problem in some logic formalism and use a meta-algorithm

3

3 Monadic Second Order Logic

Monadic Second Order Logic

• Monadic Second Order (MSO) Logic is a powerful formalism for expressing graph properties. One can quantify
over vertices, edges, vertex sets, and edge sets.

• Courcelle’s theorem: Checking whether a graph G satisfies an MSO property is FPT parameterized by the
treewidth of G plus the length of the MSO expression. [Courcelle, ’90]

• Arnborg et al.’s generalization: Several generalizations. For example, FPT algorithm for parameter tw(G) +
|φ(X)| that takes as input a graph G and an MSO sentence φ(X) where X is a free (non-quantified) vertex
set variable, that computes a minimum-sized set of vertices X such that φ(X) is true in G. Also, the input
vertices and edges may be colored and their color can be tested. [Arnborg, Lagergren, Seese, ’91]

Elements of MSO
An MSO formula has

• variables representing vertices (u, v, . . .), edges (a, b, . . .), vertex subsets (X,Y, . . .), or edge subsets (A,B, . . .)
in the graph

• atomic operations

– u ∈ X: testing set membership

– X = Y : testing equality of objects

– inc(u, a): incidence test “is vertex u an endpoint of the edge a?”

• propositional logic on subformulas: φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1, φ1 ⇒ φ2

• Quantifiers: ∀X ⊆ V , ∃A ⊆ E, ∀u ∈ V , ∃a ∈ E, etc.

Shortcuts in MSO
We can define some shortcuts

• u 6= v is ¬(u = v)

• X ⊆ Y is ∀v ∈ V (v ∈ X)⇒ (v ∈ Y)

• ∀v ∈ X ϕ is ∀v ∈ V (v ∈ X)⇒ ϕ

• ∃v ∈ X ϕ is ∃v ∈ V (v ∈ X) ∧ ϕ

• adj(u, v) is (u 6= v) ∧ ∃a ∈ E (inc(u, a) ∧ inc(v, a))

MSO Logic Example
Example: 3-Coloring,

• “there are three independent sets in G = (V,E) which form a partition of V ”

• 3COL := ∃R ⊆ V ∃G ⊆ V ∃B ⊆ V partition(R,G,B)∧independent(R)∧independent(G)∧independent(B)
where
partition(R,G,B) := ∀v ∈ V ((v ∈ R ∧ v /∈ G ∧ v /∈ B) ∨ (v /∈ R ∧ v ∈ G ∧ v /∈ B) ∨ (v /∈ R ∧ v /∈ G ∧ v ∈ B))
and
independent(X) := ¬(∃u ∈ X ∃v ∈ X adj(u, v))

By Courcelle’s theorem and our 3COL MSO formula, we have:

Theorem 1. 3-Coloring is FPT with parameter treewidth.

4

Treewidth only for graph problems?
Let us use treewidth to solve a Logic Problem

• associate a graph with the instance

• take the tree decomposition of the graph

• most widely used: primal graphs, incidence graphs, and dual graphs of formulas.

Three Treewidth Parameters
CNF Formula F = C ∧D ∧ E ∧ G ∧H where C = (u ∨ v ∨ ¬y), D = (¬u ∨ z ∨ y), E = (¬v ∨ w), G = (¬w ∨ x),
H = (x ∨ y ∨ ¬z).

y

u

v

w

x

z

primal graph

D

H

G E

C

dual graph

D
z

H

x

G
w

E

v

C

u

y

incidence graph

This gives rise to parameters primal treewidth, dual treewidth, and incidence treewidth.

Definition 2. Let F be a CNF formula with variables var(F) and clauses cla(F). The primal graph of F is the
graph with vertex set var(F) where two variables are adjacent if they appear together in a clause of F . The dual
graph of F is the graph with vertex set cla(F) where two clauses are adjacent if they have a variable in common.
The incidence graph of F is the bipartite graph with vertex set var(F) ∪ cla(F) where a variable and a clause are
adjacent if the variable appears in the clause. The primal treewidth, dual treewidth, and incidence treewidth of F is
the treewidth of the primal graph, the dual graph, and the incidence graph of F , respectively.

Incidence treewidth is most general

Lemma 3. The incidence treewidth of F is at most the primal treewidth of F plus 1.

Proof. Start from a tree decomposition (T, γ) of the primal graph with minimum width. For each clause C:

• There is a node t of T with var(C) ⊆ γ(t), since var(C) is a clique in the primal graph.

• Add to t a new neighbor t′ with γ(t′) = γ(t) ∪ {C}.

Lemma 4. The incidence treewidth of F is at most the dual treewidth of F plus 1.

Primal and dual treewidth are incomparable.

• One big clause alone gives large primal treewidth.

• {{x, y1}, {x, y2}, . . . , {x, yn}} gives large dual treewidth.

SAT parameterized by treewidth

Sat
Input: A CNF formula F
Question: Is there an assignment of truth values to var(F) such that F evaluates to true?

Note: If Sat is FPT parameterized by incidence treewidth, then Sat is FPT parameterized by primal treewidth
and by dual treewidth.

5

SAT is FPT for parameter incidence treewidth
CNF Formula F = C ∧D ∧ E ∧ G ∧H where C = (u ∨ v ∨ ¬y), D = (¬u ∨ z ∨ y), E = (¬v ∨ w), G = (¬w ∨ x),
H = (x ∨ y ∨ ¬z)

Auxiliary graph:

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

C D E G H

• MSO Formula: “There exists an independent set of literal vertices that dominates all the clause vertices.”

• The treewidth of the auxilary graph is at most twice the treewidth of the incidence graph plus one.

FPT via MSO

Theorem 5. Sat is FPT for each of the following parameters: primal treewidth, dual treewidth, and incidence
treewidth.

4 Dynamic Programming over Tree Decompositions

Coucelle’s theorem: discussion
Advantages of Courcelle’s theorem:

• general, applies to many problems

• easy to obtain FPT results

Drawback of Courcelle’s theorem

• the resulting running time depends non-elementarily on the treewidth t and the length ` of the MSO-sentence,
i.e., a tower of 2’s whose height is ω(1)

22
2
. .

.
t+`

Dynamic progamming over tree decompositions
Idea: extend the algorithmic methods that work for trees to tree decompositions.

Step 1 Compute a minumum width tree decomposition using Bodlaender’s algorithm

Step 2 Transform it into a standard form making computations easier

Step 3 Bottom-up Dynamic Programming (from the leaves of the tree decomposition to the root)

Nice tree decomposition
A nice tree decomposition (T, γ) has 4 kinds of bags:

• leaf node: leaf t in T and |γ(t)| = 1

• introduce node: node t with one child t′ in T and γ(t) = γ(t′) ∪ {x}

• forget node: node t with one child t′ in T and γ(t) = γ(t′) \ {x}

• join node: node t with two children t1, t2 in T and γ(t) = γ(t1) = γ(t2)

Every tree decomposition of width w of a graph G on n vertices can be transformed into a nice tree decomposition
of width w and O(w · n) nodes in polynomial time [Kloks ’94].

6

4.1 Sat

Dynamic programming: primal treewidth

• Compute a nice tree decomposition (T, γ) of F ’s primal graph with minimum width [Bodlaender ’96; Kloks ’94]

• Select an arbitary root r of T

• Denote Tt the subtree of T rooted at t

• Denote γ↓(t) = {x ∈ γ(t′) : t′ ∈ V (Tt)}

• Denote F↓(t) = {C ∈ F : var(C) ⊆ γ↓(t)}

• For a node t and an assignment τ : γ(t)→ {0, 1}, define

sat(t, τ) =

1 if τ can be extended to a

satisfying assignment of F↓(t)

0 otherwise.

Denote x1 = x and x0 = ¬x. We will view F as a set of clauses and each clause as a set of literals; e.g.
F = {{x,¬y}, {¬x, y, z}} instead of F = (x ∨ ¬y) ∧ (¬x ∨ y ∨ z)

• leaf node: sat(t, {x = a}) =

{
1 if {x1−a} /∈ F
0 otherwise

• introduce node: γ(t) = γ(t′) ∪ {x}.

sat(t, {x = a} ∪ {xi = ai}i) = sat(t′, {xi = ai}i)
∧ @C ∈ F : C ⊆ {x1−a} ∪ {x1−ai

i }i.

• forget node: γ(t) = γ(t′) \ {x}.

sat(t, {xi = ai}i) = sat(t′, {x = 0} ∪ {xi = ai}i)
∨ sat(t′, {x = 1} ∪ {xi = ai}i).

• join node:

sat(t, {xi = ai}i) = sat(t1, {xi = ai}i)
∧ sat(t2, {xi = ai}i).

• Finally: F is satisfiable iff ∃τ : γ(r)→ {0, 1} such that sat(r, τ) = 1

• Running time: O∗(2k), where k is the primal treewidth of F , supposed we are given a minimum width tree
decomposition

• Also extends to computing the number of satisfying assignments

Direct Algorithms
Known treewidth based algorithms for Sat:

k = primal tw k = dual tw k = incidence tw

O∗(2k) O∗(2k) O∗(4k)

• It is still worth considering primal treewidth and dual treewidth.

• These algorithms all count the number of satisfying assignments.

7

4.2 CSP

Constraint Satisfaction Problem

CSP
Input: A set of variables X, a domain D, and a set of constraints C
Question: Is there an assignment τ : X → D satisfying all the constraints in C?

A constraint has a scope S = (s1, . . . , sr) with si ∈ X, i ∈ {1, . . . , r}, and a constraint relation R consisting of r-
tuples of values in D. An assignment τ : X → D satisfies a constraint c = (S,R) if there exists a tuple (d1, . . . , dr)
in R such that τ(si) = di for each i ∈ {1, . . . , r}.

Bounded Treewidth for Constraint Satisfaction

• Primal, dual, and incidence graphs are defined similarly as for Sat.

Theorem 6 ([Gottlob, Scarcello, Sideri ’02]). CSP is FPT for parameter primal treewidth if |D| = O(1).

• What if domains are unbounded?

Unbounded domains

Theorem 7. CSP is W[1]-hard for parameter primal treewidth.

Proof Sketch. Parameterized reduction from Clique. Let (G = (V,E), k) be an instance of Clique. Take k
variables x1, . . . , xk, each with domain V . Add

(
k
2

)
binary constraints Ei,j , 1 ≤ i < j ≤ k. A constraint Ei,j has

scope (xi, xj) and its constraint relation contains the tuple (u, v) if uv ∈ E. The primal treewidth of this CSP
instance is k − 1.

5 Further Reading

• Chapter 7, Treewidth in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

• Chapter 5, Treewidth in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

• Chapter 10, Tree Decompositions of Graphs in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms.
Oxford University Press, 2006.

• Chapter 10, Treewidth and Dynamic Programming in Rodney G. Downey and Michael R. Fellows. Funda-
mentals of Parameterized Complexity. Springer, 2013.

• Chapter 13, Courcelle’s Theorem in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Springer, 2013.

8

	Algorithms for trees
	Tree decompositions
	Monadic Second Order Logic
	Dynamic Programming over Tree Decompositions
	Sat
	CSP

	Further Reading

