4. Inclusion-Exclusion

COMP6741: Parameterized and Exact Computation

Serge Gaspers¹²

¹School of Computer Science and Engineering, UNSW Australia ²Data61, Decision Sciences Group, CSIRO

Semester 2, 2016

Outline

- 1 The Principle of Inclusion-Exclusion
- Counting Hamiltonian Cycles
- Coloring
- 4 Counting Set Covers
- Counting Set Partitions
- 6 Further Reading

Outline

- 1 The Principle of Inclusion-Exclusion
- Counting Hamiltonian Cycles
- Coloring
- 4 Counting Set Covers
- **5** Counting Set Partitions
- 6 Further Reading

$$|A \cup B \cup C| =$$

4 / 31

$$|A \cup B \cup C| = |A| + |B| + |C|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$
$$|A \cup B \cup C| = \sum_{X \subseteq \{A,B,C\}} (-1)^{|X|+1} \cdot \left| \bigcap X \right|$$

$$|A \cap B \cap C| =$$

$$|A \cap B \cap C| = |U|$$

$$|A \cap B \cap C| = |U| - |\overline{A}| - |\overline{B}| - |\overline{C}|$$

$$|\underline{A} \cap \underline{B} \cap \underline{C}| = |\underline{U}| - |\overline{\underline{A}}| - |\overline{\underline{B}}| - |\overline{\underline{C}}| + |\overline{\underline{A}} \cap \overline{\underline{B}}| + |\overline{\underline{A}} \cap \overline{\underline{C}}| + |\overline{\underline{B}} \cap \overline{\underline{C}}|$$

$$|A\cap B\cap C|=|U|-|\overline{A}|-|\overline{B}|-|\overline{C}|+|\overline{A}\cap \overline{B}|+|\overline{A}\cap \overline{C}|+|\overline{B}\cap \overline{C}|-|\overline{A}\cap \overline{B}\cap \overline{C}|$$

$$\begin{aligned} |A \cap B \cap C| &= |U| - |\overline{A}| - |\overline{B}| - |\overline{C}| + |\overline{A} \cap \overline{B}| + |\overline{A} \cap \overline{C}| + |\overline{B} \cap \overline{C}| - |\overline{A} \cap \overline{B} \cap \overline{C}| \\ |A \cap B \cap C| &= \sum_{X \subseteq \{A,B,C\}} (-1)^{|X|} \cdot \left| \bigcap \overline{X} \right| \end{aligned}$$

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5

т

Inclusion-Exclusion Principle – intersection version

Theorem 1 (IE-theorem – intersection version)

Let $U = A_0$ be a finite set, and let $A_1, \ldots, A_k \subseteq U$.

$$\left| \bigcap_{i \in \{1, \dots, k\}} A_i \right| = \sum_{J \subseteq \{1, \dots, k\}} (-1)^{|J|} \left| \bigcap_{i \in J} \overline{A_i} \right|,$$

where $\overline{A_i} = U \setminus A_i$ and $\bigcap_{i \in \emptyset} = U$.

Inclusion-Exclusion Principle – intersection version

Theorem 1 (IE-theorem – intersection version)

Let $U = A_0$ be a finite set, and let $A_1, \ldots, A_k \subseteq U$.

$$\left|\bigcap_{i\in\{1,\dots,k\}}A_i\right| = \sum_{J\subseteq\{1,\dots,k\}} (-1)^{|J|} \left|\bigcap_{i\in J} \overline{A_i}\right|,$$

where $\overline{A_i} = U \setminus A_i$ and $\bigcap_{i \in \emptyset} = U$.

Proof sketch.

- An element $e \in \bigcap_{i \in \{1,...,k\}} A_i$ is counted on the right only for $J = \emptyset$.
- An element $e \notin \bigcap_{i \in \{1,...,k\}} A_i$ is counted on the right for all $J \subseteq I$, where I is the set of indices i such that $e \notin A_i$.
 - counted negatively for each odd-sized $J\subseteq I$, and positively for each even-sized $J\subset I$
 - a non-empty set has as many even-sized subsets as odd-sized subsets

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

Outline

- The Principle of Inclusion-Exclusion
- Counting Hamiltonian Cycles
- Coloring
- Counting Set Covers
- **5** Counting Set Partitions
- 6 Further Reading

• A walk of length k in a graph G=(V,E) (short, a k-walk) is a sequence of vertices v_0,v_1,\ldots,v_k such that $v_iv_{i+1}\in E$ for each $i\in\{0,\ldots,k-1\}$.

- A walk of length k in a graph G=(V,E) (short, a k-walk) is a sequence of vertices v_0,v_1,\ldots,v_k such that $v_iv_{i+1}\in E$ for each $i\in\{0,\ldots,k-1\}$.
- A walk (v_0, v_1, \dots, v_k) is closed if $v_0 = v_k$.

- A walk of length k in a graph G=(V,E) (short, a k-walk) is a sequence of vertices v_0,v_1,\ldots,v_k such that $v_iv_{i+1}\in E$ for each $i\in\{0,\ldots,k-1\}$.
- A walk (v_0, v_1, \ldots, v_k) is closed if $v_0 = v_k$.
- A cycle is a 2-regular subgraph of G.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

- A walk of length k in a graph G=(V,E) (short, a k-walk) is a sequence of vertices v_0,v_1,\ldots,v_k such that $v_iv_{i+1}\in E$ for each $i\in\{0,\ldots,k-1\}$.
- A walk (v_0, v_1, \dots, v_k) is closed if $v_0 = v_k$.
- A cycle is a 2-regular subgraph of G.
- A Hamiltonian cycle of G is a cycle of length n = |V|.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

#HAMILTONIAN-CYCLES

#HAMILTONIAN-CYCLES

Input: A graph G = (V, E)

Output: The number of Hamiltonian cycles of G

This graph has 2 Hamiltonian cycles.

IE for #HAMILTONIAN-CYCLES

- U: the set of closed n-walks starting at vertex 1
- $A_v \subseteq U$: walks in U that visit vertex $v \in V$
- ullet \Rightarrow number of Hamiltonian cycles is $|\bigcap_{v\in V}A_v|$
- To use the IE-theorem, we need to compute $|\bigcap_{v\in S} \overline{A_v}|$, the number of walks from U in the graph G-S.

A simpler problem

```
\#\text{Closed } n\text{-Walks}
```

Input: An integer n, and a graph G = (V, E) on $\leq n$ vertices Output: The number of closed n-walks in G starting at vertex 1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 11 / 31

A simpler problem

```
\#\text{Closed } n\text{-Walks}
```

Input: An integer n, and a graph G=(V,E) on $\leq n$ vertices Output: The number of closed n-walks in G starting at vertex 1

Dynamic programming

- \bullet T[d,v]: number of d-walks starting at vertex 1 and ending at vertex v
- \bullet Base cases: T[0,1]=1 and T[0,v]=0 for all $v\in V\setminus\{1\}$
- \bullet DP recurrence: $T[d,v] = \sum_{uv \in E} T[d-1,u]$
- ullet Table T is filled by increasing d
- Return T[n,1] in $O(n^3)$ time

Wrapping up

Recall:

U: set of closed n-walks starting at vertex 1 A_v : set of closed n-walks that start at vertex 1 and visit vertex v

• By the IE-theorem, the number of Hamiltonian cycles is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$

Wrapping up

Recall:

U: set of closed n-walks starting at vertex 1 A_v : set of closed n-walks that start at vertex 1 and visit vertex v

By the IE-theorem, the number of Hamiltonian cycles is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$

- We have seen that $\left|\bigcap_{v\in S}\overline{A_v}\right|$ can be computed in $O(n^3)$ time.
- \bullet So, $\sum_{S\subseteq V} (-1)^{|S|} \left| \bigcap_{v\in S} \overline{A_v} \right|$ can be evaluated in $O(2^n n^3)$ time

Wrapping up

Recall:

U: set of closed n-walks starting at vertex 1 A_v : set of closed n-walks that start at vertex 1 and visit vertex v

• By the IE-theorem, the number of Hamiltonian cycles is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$

- We have seen that $\left|\bigcap_{v\in S}\overline{A_v}\right|$ can be computed in $O(n^3)$ time.
- \bullet So, $\sum_{S\subseteq V} (-1)^{|S|} \left| \bigcap_{v\in S} \overline{A_v} \right|$ can be evaluated in $O(2^n n^3)$ time

Theorem 2

 $\# {\it Hamiltonian-Cycles}$ can be solved in $O(2^n n^3)$ time and polynomial space, where n=|V|.

Outline

- The Principle of Inclusion-Exclusion
- 2 Counting Hamiltonian Cycles
- 3 Coloring
- 4 Counting Set Covers
- **5** Counting Set Partitions
- Further Reading

Coloring

A k-coloring of a graph G=(V,E) is a function $f:V \to \{1,2,...,k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k

Question: Does G have a k-coloring?

Coloring

A k-coloring of a graph G=(V,E) is a function $f:V\to\{1,2,...,k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k

Question: Does G have a k-coloring?

Exercise

- Suppose A is an algorithm solving COLORING in O(f(n)) time, n=|V|, where f is non-decreasing.
- Design a $O^*(f(n))$ time algorithm B, which, for an input graph G, finds a coloring of G with a minimum number of colors.

Observation: partitioning vs. covering

$$G=(V,E)$$
 has a k -coloring

$$\Leftrightarrow$$

Observation: partitioning vs. covering

$$G = (V, E)$$
 has a k -coloring

G has independent sets I_1, \ldots, I_k such that $\bigcup_{i=1}^k I_i = V$.

ullet U: set of tuples (I_1,\ldots,I_k) , where each $I_i,\,i\in\{1,\ldots,k\}$, is an independent set

Observation: partitioning vs. covering

$$G=(V,E)$$
 has a k -coloring

- U: set of tuples (I_1, \ldots, I_k) , where each I_i , $i \in \{1, \ldots, k\}$, is an independent set
- $A_v = \{(I_1, \dots, I_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} I_i\}$

Observation: partitioning vs. covering

$$G = (V, E)$$
 has a k -coloring

- U: set of tuples (I_1, \ldots, I_k) , where each I_i , $i \in \{1, \ldots, k\}$, is an independent set
- $A_v = \{(I_1, \dots, I_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} I_i\}$
- Note: $\left|\bigcap_{v\in V}A_v\right|\neq 0\Leftrightarrow G$ has a k-coloring

Observation: partitioning vs. covering

$$G = (V, E)$$
 has a k -coloring

- U: set of tuples (I_1, \ldots, I_k) , where each I_i , $i \in \{1, \ldots, k\}$, is an independent set
- $A_v = \{(I_1, \dots, I_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} I_i\}$
- Note: $\left|\bigcap_{v\in V}A_v\right|\neq 0\Leftrightarrow G$ has a k-coloring
- To use the IE-theorem, we need to compute

$$\left|\bigcap_{v\in S} \overline{A_v}\right| = \left|\left\{(I_1,\ldots,I_k)\in U: I_1,\ldots,I_k\subseteq V\setminus S\right\}\right|$$

IE formulation

Observation: partitioning vs. covering

$$G = (V, E)$$
 has a k -coloring

G has independent sets I_1, \ldots, I_k such that $\bigcup_{i=1}^k I_i = V$.

- ullet U: set of tuples (I_1,\ldots,I_k) , where each $I_i,\ i\in\{1,\ldots,k\}$, is an independent set
- $A_v = \{(I_1, \dots, I_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} I_i\}$
- Note: $\left|\bigcap_{v\in V}A_v\right|\neq 0\Leftrightarrow G$ has a k-coloring
- To use the IE-theorem, we need to compute

$$\left| \bigcap_{v \in S} \overline{A_v} \right| = \left| \{ (I_1, \dots, I_k) \in U : I_1, \dots, I_k \subseteq V \setminus S \} \right|$$

$$= s(V \setminus S)^k,$$

where s(X) is the number of independent sets in G[X]

A simpler problem

#IS OF INDUCED SUBGRAPHS

Input: A graph G = (V, E)

Output: s(X), the number of independent sets of G[X], for each $X \subseteq V$

A simpler problem

#IS OF INDUCED SUBGRAPHS

Input: A graph G = (V, E)

Output: s(X), the number of independent sets of G[X], for each $X \subseteq V$

Dynamic Programming

- ullet s(X): the number of independent sets of G[X]
- Base case: $s(\emptyset) = 1$
- DP recurrence: $s(X) = s(X \setminus N_G[v]) + s(X \setminus \{v\})$, where $v \in X$
- ullet Table s filled by increasing cardinalities of X
- Output s(X) for each $X \subseteq V$ in time $O^*(2^n)$

Wrapping up

Now, evaluate

$$\left|\bigcap_{v\in V} A_v\right| = \sum_{S\subseteq V} (-1)^{|S|} \left|\bigcap_{v\in S} \overline{A_v}\right| = \sum_{S\subseteq V} (-1)^{|S|} s(V\setminus S)^k,$$

in $O^*(2^n)$ time.

G has a k-coloring iff $\left|\bigcap_{v\in V}A_v\right|>0$.

Theorem 3 ([Bjørklund & Husfeldt '06], [Koivisto '06])

COLORING can be solved in $O^*(2^n)$ time (and space).

Corollary 4

For a given graph G, a coloring with a minimum number of colors can be found in $O^*(2^n)$ time (and space).

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

... polynomial space

Using an algorithm by [Gaspers, Lee, 2016], counting all independent sets in a graph on n vertices in $O(1.2355^n)$ time, we obtain a polynomial-space algorithm for COLORING with running time

$$\sum_{S\subseteq V} O(1.2355^{n-|S|}) = \sum_{s=0}^n \binom{n}{s} O(1.2377^{n-s}) = O(2.2355^n).$$

Here, we used the Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Theorem 5

Coloring can be solved in $O(2.2355^n)$ time and polynomial space.

Outline

- Counting Hamiltonian Cycles
- 4 Counting Set Covers
- Counting Set Partitions

Counting Set Covers

#Set Covers

Input: A finite ground set V of elements, a collection H of subsets of V,

and an integer k

Output: The number of ways to choose a k-tuple of sets (S_1,\ldots,S_k) with

 $S_i \in H$, $i \in \{1, \dots, k\}$, such that $\bigcup_{i=1}^k S_i = V$.

This instance has $1 \cdot 3! = 6$ covers with 3 sets and $3 \cdot 4! = 72$ covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be enumerated in $O^*(2^n)$ time and space.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

Algorithm for Counting Set Covers

- U: set of k-tuples (S_1, \ldots, S_k) , where $S_i \in H$, $i \in \{1, \ldots, k\}$,
- $A_v = \{(S_1, \dots, S_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} S_i\}$,
- the number of covers with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$
$$= \sum_{S \subseteq V} (-1)^{|S|} s(V \setminus S)^k,$$

where s(X) is the number of sets in H that are subsets of X.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

Compute s(X)

For each $X \subseteq V$, compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

- Arbitrarily order $V = \{v_1, v_2, \dots, v_n\}$
- $g[X,i] = |\{S \in H : (X \cap \{v_i,\ldots,v_n\}) \subseteq S \subseteq X\}|$
- $\bullet \ \operatorname{Note:} \ g[X,n+1] = s(X)$
- Base case: $g[X,1] = \begin{cases} 1 & \text{if } X \in H \\ 0 & \text{otherwise.} \end{cases}$
- $\bullet \ \, \mathsf{DP} \ \, \mathsf{recurrence:} \ \, g[X,i] = \begin{cases} g[X,i-1] & \text{if } v_{i-1} \notin X \\ g[X \setminus \{v_{i-1}\},i-1] + g[X,i-1] & \text{otherwise.} \end{cases}$
- ullet Table filled by increasing i

Compute s(X)

For each $X \subseteq V$, compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

- ullet Arbitrarily order $V=\{v_1,v_2,\ldots,v_n\}$
- $g[X,i] = |\{S \in H : (X \cap \{v_i,\ldots,v_n\}) \subseteq S \subseteq X\}|$
- Note: g[X, n+1] = s(X)
- Base case: $g[X,1] = \begin{cases} 1 & \text{if } X \in H \\ 0 & \text{otherwise.} \end{cases}$
- $\bullet \ \, \mathsf{DP} \ \, \mathsf{recurrence:} \ \, g[X,i] = \begin{cases} g[X,i-1] & \text{if } v_{i-1} \notin X \\ g[X \setminus \{v_{i-1}\},i-1] + g[X,i-1] & \text{otherwise.} \end{cases}$
- ullet Table filled by increasing i

Theorem 6

#Set Covers can be solved in $O^*(2^n)$ time and space, where n = |V|.

Outline

- The Principle of Inclusion-Exclusion
- Counting Hamiltonian Cycles
- Coloring
- 4 Counting Set Covers
- **6** Counting Set Partitions
- 6 Further Reading

Counting Set Partitions

#Ordered Set Partitions

Input: A finite ground set V of elements, a collection H of subsets of V,

and an integer \boldsymbol{k}

Output: The number of ways to choose a k-tuple of pairwise disjoint sets

 (S_1,\ldots,S_k) with $S_i\in H$, $i\in\{1,\ldots,k\}$, such that $\bigcup_{i=1}^k S_i=V$. (Now, $S_i\cap S_i=\emptyset$, if $i\neq j$.)

This instance has $1 \cdot 3! = 6$ ordered partitions with 3 sets.

IE formulation

Lemma 7

The number of ordered k-partitions of a set system (V, H) is

$$\sum_{S\subseteq V} (-1)^{|S|} a_k(V\setminus S),$$

where $a_k(X)$ denotes the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

IE formulation

Lemma 7

The number of ordered k-partitions of a set system (V, H) is

$$\sum_{S\subseteq V} (-1)^{|S|} a_k(V\setminus S),$$

where $a_k(X)$ denotes the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Proof (Sketch).

- U: set of tuples (S_1,\ldots,S_k) , where $S_i\in H$, $i\in\{1,\ldots,k\}$, and $\sum_{i=1}^k |S_i| = |V|$
- $A_v = \{(S_1, \dots, S_k) \in U : v \in \bigcup_{i \in \{1, \dots, k\}} S_i\}$,
- ullet the number of ordered partitions with k sets is

$$\left| \bigcap_{v \in V} A_v \right| = \sum_{S \subseteq V} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right| = \sum_{S \subseteq V} (-1)^{|S|} a_k(V \setminus S).$$

IE evaluation

For each $X\subseteq V$, we need to compute $a_k(X)$, the number of k-tuples of sets $S_1,\ldots,S_k\subseteq X$ with $\sum_{i=1}^k |S_i|=|V|$.

IE evaluation

For each $X \subseteq V$, we need to compute $a_k(X)$, the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Dynamic Programming

- (1) Compute $s[X,i] = |\{Y \in H : Y \subseteq X \text{ and } |Y| = i\}|$ for each $X \subseteq V$ and each $i \in \{0, \dots, n\}$:
 - The entries $s[\cdot, i]$ are computed the same ways as $s[\cdot]$ in the previous section, but keep only the sets in H of size i.

IE evaluation

For each $X \subseteq V$, we need to compute $a_k(X)$, the number of k-tuples of sets $S_1, \ldots, S_k \subseteq X$ with $\sum_{i=1}^k |S_i| = |V|$.

Dynamic Programming

- (1) Compute $s[X,i]=|\{Y\in H:Y\subseteq X \text{ and } |Y|=i\}|$ for each $X\subseteq V$ and each $i\in\{0,\dots,n\}$:
 - ullet The entries $s[\cdot,i]$ are computed the same ways as $s[\cdot]$ in the previous section, but keep only the sets in H of size i.
- (2) $A[\ell,m,X]$: number of tuples (S_1,\ldots,S_ℓ) with $S_i\in H$, $S_i\subseteq X$, and $\sum_{i=1}^\ell |S_i|=m$.
 - $\bullet \ \, \mathsf{Base \ case:} \ \, A[1,m,X] = s[X,m]$
 - \bullet DP recurrence: $A[\ell,m,X] = \sum_{i=1}^{m-1} s[X,i] \cdot A[\ell-1,m-i,X]$
 - ullet Table filled by increasing ℓ
 - Note: $a_k(X) = A[k, |V|, X]$

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

Algorithm for Counting Set Partitions

Theorem 8

#Ordered Set Partitions can be solved in $O^*(2^n)$ time and space.

Algorithm for Counting Set Partitions

Theorem 8

#Ordered Set Partitions can be solved in $O^*(2^n)$ time and space.

Corollary 9

There is an algorithm computing the number of k-colorings of an input graph on n vertices in $O^*(2^n)$ time and space.

Theorem 10

The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and

Theorem 10

The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and

 $oldsymbol{O}^*(2^n|H|)$ time, assuming that H can be enumerated in $O^*(|H|)$ time and polynomial space

Theorem 10

The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and

- $oldsymbol{O}^*(2^n|H|)$ time, assuming that H can be enumerated in $O^*(|H|)$ time and polynomial space
- \bullet $O^*(3^n)$ time, assuming membership in H can be decided in polynomial time, and

Theorem 10

The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and

- $oldsymbol{O}^*(2^n|H|)$ time, assuming that H can be enumerated in $O^*(|H|)$ time and polynomial space
- \bullet $O^*(3^n)$ time, assuming membership in H can be decided in polynomial time, and

Exercise

A graph G = (V, E) is bipartite if V can be partitioned into two independent sets. A matching in a graph G = (V, E) is a set of edges $M \subseteq E$ such that no two edges of M have an end-point in common.

The matching M in G is perfect if every vertex of G is contained in an edge of M.

#BIPARTITE PERFECT MATCHINGS

Input: Bipartite graph G = (V, E)

Output: The number of perfect matchings in G.

- **1** Design an algorithm with running time $O^*\left(\left(\frac{n}{2}\right)!\right)$, where n=|V|.
- Design a polynomial-space $O^*(2^{n/2})$ -time inclusion-exclusion algorithm.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016

Outline

- 1 The Principle of Inclusion-Exclusion
- Counting Hamiltonian Cycles
- Coloring
- Counting Set Covers
- **5** Counting Set Partitions
- 6 Further Reading

Reading

- Chapter 4, Inclusion-Exclusion in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion.
 Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP 2011): 42-59, 2011.

Advanced Reading

 Chapter 7, Subset Convolution in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 31 / 31