
4. Inclusion-Exclusion

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Australia
2Data61, Decision Sciences Group, CSIRO

Semester 2, 2016

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 1 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 2 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 3 / 31

... for 3 sets

|A ∪B ∪ C| =

|A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

|A ∪B ∪ C| =
∑

X⊆{A,B,C}

(−1)|X|+1 ·
∣∣∣⋂X

∣∣∣

A

B

C

0

0

0

0

0

0

0

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 4 / 31

... for 3 sets

|A ∪B ∪ C| = |A|+ |B|+ |C|

− |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

|A ∪B ∪ C| =
∑

X⊆{A,B,C}

(−1)|X|+1 ·
∣∣∣⋂X

∣∣∣

A

B

C

1

1

1

2

2

2

3

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 4 / 31

... for 3 sets

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|

+ |A ∩B ∩ C|

|A ∪B ∪ C| =
∑

X⊆{A,B,C}

(−1)|X|+1 ·
∣∣∣⋂X

∣∣∣

A

B

C

1

1

1

1

1

1

0

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 4 / 31

... for 3 sets

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

|A ∪B ∪ C| =
∑

X⊆{A,B,C}

(−1)|X|+1 ·
∣∣∣⋂X

∣∣∣

A

B

C

1

1

1

1

1

1

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 4 / 31

... for 3 sets

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

|A ∪B ∪ C| =
∑

X⊆{A,B,C}

(−1)|X|+1 ·
∣∣∣⋂X

∣∣∣
A

B

C

1

1

1

1

1

1

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 4 / 31

... intersection version

|A ∩B ∩ C| =

|U | − |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|

|A ∩B ∩ C| =
∑

X⊆{A,B,C}

(−1)|X| ·
∣∣∣⋂X

∣∣∣

U
A

B

C

0

0

0

0

0

0

0

0

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5 / 31

... intersection version

|A ∩B ∩ C| = |U |

− |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|

|A ∩B ∩ C| =
∑

X⊆{A,B,C}

(−1)|X| ·
∣∣∣⋂X

∣∣∣

U
A

B

C

1

1

1

1

1

1

1

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5 / 31

... intersection version

|A ∩B ∩ C| = |U | − |A| − |B| − |C|

+ |A ∩B|+ |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|

|A ∩B ∩ C| =
∑

X⊆{A,B,C}

(−1)|X| ·
∣∣∣⋂X

∣∣∣

U
A

B

C

−2

−1

−1

−1

0

0

0

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5 / 31

... intersection version

|A ∩B ∩ C| = |U | − |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C|

− |A ∩B ∩ C|

|A ∩B ∩ C| =
∑

X⊆{A,B,C}

(−1)|X| ·
∣∣∣⋂X

∣∣∣

U
A

B

C

1

0

0

0

0

0

0

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5 / 31

... intersection version

|A ∩B ∩ C| = |U | − |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|

|A ∩B ∩ C| =
∑

X⊆{A,B,C}

(−1)|X| ·
∣∣∣⋂X

∣∣∣

U
A

B

C

0

0

0

0

0

0

0

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5 / 31

... intersection version

|A ∩B ∩ C| = |U | − |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|

|A ∩B ∩ C| =
∑

X⊆{A,B,C}

(−1)|X| ·
∣∣∣⋂X

∣∣∣
U

A

B

C

0

0

0

0

0

0

0

1

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 5 / 31

Inclusion-Exclusion Principle – intersection version

Theorem 1 (IE-theorem – intersection version)

Let U = A0 be a finite set, and let A1, . . . , Ak ⊆ U .∣∣∣∣∣∣
⋂

i∈{1,...,k}

Ai

∣∣∣∣∣∣ =
∑

J⊆{1,...,k}

(−1)|J|
∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ ,
where Ai = U \Ai and

⋂
i∈∅ = U .

Proof sketch.

An element e ∈
⋂

i∈{1,...,k}Ai is counted on the right only for J = ∅.
An element e /∈

⋂
i∈{1,...,k}Ai is counted on the right for all J ⊆ I, where I

is the set of indices i such that e /∈ Ai.

counted negatively for each odd-sized J ⊆ I, and positively for each even-sized
J ⊆ I
a non-empty set has as many even-sized subsets as odd-sized subsets

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 6 / 31

Inclusion-Exclusion Principle – intersection version

Theorem 1 (IE-theorem – intersection version)

Let U = A0 be a finite set, and let A1, . . . , Ak ⊆ U .∣∣∣∣∣∣
⋂

i∈{1,...,k}

Ai

∣∣∣∣∣∣ =
∑

J⊆{1,...,k}

(−1)|J|
∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ ,
where Ai = U \Ai and

⋂
i∈∅ = U .

Proof sketch.

An element e ∈
⋂

i∈{1,...,k}Ai is counted on the right only for J = ∅.
An element e /∈

⋂
i∈{1,...,k}Ai is counted on the right for all J ⊆ I, where I

is the set of indices i such that e /∈ Ai.

counted negatively for each odd-sized J ⊆ I, and positively for each even-sized
J ⊆ I
a non-empty set has as many even-sized subsets as odd-sized subsets

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 6 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 7 / 31

Walks and cycles

A walk of length k in a graph G = (V,E) (short, a k-walk) is a sequence of
vertices v0, v1, . . . , vk such that vivi+1 ∈ E for each i ∈ {0, . . . , k − 1}.

A walk (v0, v1, . . . , vk) is closed if v0 = vk.

A cycle is a 2-regular subgraph of G.

A Hamiltonian cycle of G is a cycle of length n = |V |.

a b

c d

e
(a, d, c, b, d, e)

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 8 / 31

Walks and cycles

A walk of length k in a graph G = (V,E) (short, a k-walk) is a sequence of
vertices v0, v1, . . . , vk such that vivi+1 ∈ E for each i ∈ {0, . . . , k − 1}.
A walk (v0, v1, . . . , vk) is closed if v0 = vk.

A cycle is a 2-regular subgraph of G.

A Hamiltonian cycle of G is a cycle of length n = |V |.

a b

c d

e

(a, d, c, b, d, e, c, a)

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 8 / 31

Walks and cycles

A walk of length k in a graph G = (V,E) (short, a k-walk) is a sequence of
vertices v0, v1, . . . , vk such that vivi+1 ∈ E for each i ∈ {0, . . . , k − 1}.
A walk (v0, v1, . . . , vk) is closed if v0 = vk.

A cycle is a 2-regular subgraph of G.

A Hamiltonian cycle of G is a cycle of length n = |V |.

a b

c d

e

(a, d, c, b, a)

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 8 / 31

Walks and cycles

A walk of length k in a graph G = (V,E) (short, a k-walk) is a sequence of
vertices v0, v1, . . . , vk such that vivi+1 ∈ E for each i ∈ {0, . . . , k − 1}.
A walk (v0, v1, . . . , vk) is closed if v0 = vk.

A cycle is a 2-regular subgraph of G.

A Hamiltonian cycle of G is a cycle of length n = |V |.

a b

c d

e

(a, d, e, c, b, a)

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 8 / 31

#Hamiltonian-Cycles

#Hamiltonian-Cycles

Input: A graph G = (V,E)
Output: The number of Hamiltonian cycles of G

a b

c d

e

This graph has 2 Hamiltonian cycles.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 9 / 31

IE for #Hamiltonian-Cycles

U : the set of closed n-walks starting at vertex 1

Av ⊆ U : walks in U that visit vertex v ∈ V

⇒ number of Hamiltonian cycles is |
⋂

v∈V Av|
To use the IE-theorem, we need to compute |

⋂
v∈S Av|, the number of walks

from U in the graph G− S.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 10 / 31

A simpler problem

#Closed n-Walks

Input: An integer n, and a graph G = (V,E) on ≤ n vertices
Output: The number of closed n-walks in G starting at vertex 1

Dynamic programming

T [d, v]: number of d-walks starting at vertex 1 and ending at vertex v

Base cases: T [0, 1] = 1 and T [0, v] = 0 for all v ∈ V \ {1}
DP recurrence: T [d, v] =

∑
uv∈E T [d− 1, u]

Table T is filled by increasing d

Return T [n, 1] in O(n3) time

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 11 / 31

A simpler problem

#Closed n-Walks

Input: An integer n, and a graph G = (V,E) on ≤ n vertices
Output: The number of closed n-walks in G starting at vertex 1

Dynamic programming

T [d, v]: number of d-walks starting at vertex 1 and ending at vertex v

Base cases: T [0, 1] = 1 and T [0, v] = 0 for all v ∈ V \ {1}
DP recurrence: T [d, v] =

∑
uv∈E T [d− 1, u]

Table T is filled by increasing d

Return T [n, 1] in O(n3) time

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 11 / 31

Wrapping up

Recall:
U : set of closed n-walks starting at vertex 1
Av: set of closed n-walks that start at vertex 1 and visit vertex v

By the IE-theorem, the number of Hamiltonian cycles is∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣

We have seen that
∣∣⋂

v∈S Av

∣∣ can be computed in O(n3) time.

So,
∑

S⊆V (−1)|S|
∣∣⋂

v∈S Av

∣∣ can be evaluated in O(2nn3) time

Theorem 2

#Hamiltonian-Cycles can be solved in O(2nn3) time and polynomial space,
where n = |V |.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 12 / 31

Wrapping up

Recall:
U : set of closed n-walks starting at vertex 1
Av: set of closed n-walks that start at vertex 1 and visit vertex v

By the IE-theorem, the number of Hamiltonian cycles is∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣
We have seen that

∣∣⋂
v∈S Av

∣∣ can be computed in O(n3) time.

So,
∑

S⊆V (−1)|S|
∣∣⋂

v∈S Av

∣∣ can be evaluated in O(2nn3) time

Theorem 2

#Hamiltonian-Cycles can be solved in O(2nn3) time and polynomial space,
where n = |V |.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 12 / 31

Wrapping up

Recall:
U : set of closed n-walks starting at vertex 1
Av: set of closed n-walks that start at vertex 1 and visit vertex v

By the IE-theorem, the number of Hamiltonian cycles is∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣
We have seen that

∣∣⋂
v∈S Av

∣∣ can be computed in O(n3) time.

So,
∑

S⊆V (−1)|S|
∣∣⋂

v∈S Av

∣∣ can be evaluated in O(2nn3) time

Theorem 2

#Hamiltonian-Cycles can be solved in O(2nn3) time and polynomial space,
where n = |V |.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 12 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 13 / 31

Coloring

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning
colors to V such that no two adjacent vertices receive the same color.

Coloring
Input: Graph G, integer k
Question: Does G have a k-coloring?

a b

c d e

f g h

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 14 / 31

Coloring

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning
colors to V such that no two adjacent vertices receive the same color.

Coloring
Input: Graph G, integer k
Question: Does G have a k-coloring?

Exercise

Suppose A is an algorithm solving Coloring in O(f(n)) time, n = |V |,
where f is non-decreasing.

Design a O∗(f(n)) time algorithm B, which, for an input graph G, finds a
coloring of G with a minimum number of colors.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 14 / 31

IE formulation

Observation: partitioning vs. covering

G = (V,E) has a k-coloring
⇔

G has independent sets I1, . . . , Ik such that
⋃k

i=1 Ii = V .

U : set of tuples (I1, . . . , Ik), where each Ii, i ∈ {1, . . . , k}, is an independent
set

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃

i∈{1,...,k} Ii}
Note:

∣∣⋂
v∈V Av

∣∣ 6= 0 ⇔ G has a k-coloring

To use the IE-theorem, we need to compute∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V \ S}|

= s(V \ S)k,

where s(X) is the number of independent sets in G[X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 15 / 31

IE formulation

Observation: partitioning vs. covering

G = (V,E) has a k-coloring
⇔

G has independent sets I1, . . . , Ik such that
⋃k

i=1 Ii = V .

U : set of tuples (I1, . . . , Ik), where each Ii, i ∈ {1, . . . , k}, is an independent
set

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃

i∈{1,...,k} Ii}
Note:

∣∣⋂
v∈V Av

∣∣ 6= 0 ⇔ G has a k-coloring

To use the IE-theorem, we need to compute∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V \ S}|

= s(V \ S)k,

where s(X) is the number of independent sets in G[X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 15 / 31

IE formulation

Observation: partitioning vs. covering

G = (V,E) has a k-coloring
⇔

G has independent sets I1, . . . , Ik such that
⋃k

i=1 Ii = V .

U : set of tuples (I1, . . . , Ik), where each Ii, i ∈ {1, . . . , k}, is an independent
set

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃

i∈{1,...,k} Ii}

Note:
∣∣⋂

v∈V Av

∣∣ 6= 0 ⇔ G has a k-coloring

To use the IE-theorem, we need to compute∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V \ S}|

= s(V \ S)k,

where s(X) is the number of independent sets in G[X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 15 / 31

IE formulation

Observation: partitioning vs. covering

G = (V,E) has a k-coloring
⇔

G has independent sets I1, . . . , Ik such that
⋃k

i=1 Ii = V .

U : set of tuples (I1, . . . , Ik), where each Ii, i ∈ {1, . . . , k}, is an independent
set

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃

i∈{1,...,k} Ii}
Note:

∣∣⋂
v∈V Av

∣∣ 6= 0 ⇔ G has a k-coloring

To use the IE-theorem, we need to compute∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V \ S}|

= s(V \ S)k,

where s(X) is the number of independent sets in G[X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 15 / 31

IE formulation

Observation: partitioning vs. covering

G = (V,E) has a k-coloring
⇔

G has independent sets I1, . . . , Ik such that
⋃k

i=1 Ii = V .

U : set of tuples (I1, . . . , Ik), where each Ii, i ∈ {1, . . . , k}, is an independent
set

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃

i∈{1,...,k} Ii}
Note:

∣∣⋂
v∈V Av

∣∣ 6= 0 ⇔ G has a k-coloring

To use the IE-theorem, we need to compute∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V \ S}|

= s(V \ S)k,

where s(X) is the number of independent sets in G[X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 15 / 31

IE formulation

Observation: partitioning vs. covering

G = (V,E) has a k-coloring
⇔

G has independent sets I1, . . . , Ik such that
⋃k

i=1 Ii = V .

U : set of tuples (I1, . . . , Ik), where each Ii, i ∈ {1, . . . , k}, is an independent
set

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃

i∈{1,...,k} Ii}
Note:

∣∣⋂
v∈V Av

∣∣ 6= 0 ⇔ G has a k-coloring

To use the IE-theorem, we need to compute∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V \ S}|

= s(V \ S)k,

where s(X) is the number of independent sets in G[X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 15 / 31

A simpler problem

#IS of Induced Subgraphs

Input: A graph G = (V,E)
Output: s(X), the number of independent sets of G[X], for each X ⊆ V

Dynamic Programming

s(X): the number of independent sets of G[X]

Base case: s(∅) = 1

DP recurrence: s(X) = s(X \NG[v]) + s(X \ {v}), where v ∈ X

Table s filled by increasing cardinalities of X

Output s(X) for each X ⊆ V in time O∗(2n)

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 16 / 31

A simpler problem

#IS of Induced Subgraphs

Input: A graph G = (V,E)
Output: s(X), the number of independent sets of G[X], for each X ⊆ V

Dynamic Programming

s(X): the number of independent sets of G[X]

Base case: s(∅) = 1

DP recurrence: s(X) = s(X \NG[v]) + s(X \ {v}), where v ∈ X

Table s filled by increasing cardinalities of X

Output s(X) for each X ⊆ V in time O∗(2n)

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 16 / 31

Wrapping up

Now, evaluate∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|s(V \ S)k,

in O∗(2n) time.
G has a k-coloring iff

∣∣⋂
v∈V Av

∣∣ > 0.

Theorem 3 ([Bjørklund & Husfeldt ’06], [Koivisto ’06])

Coloring can be solved in O∗(2n) time (and space).

Corollary 4

For a given graph G, a coloring with a minimum number of colors can be found in
O∗(2n) time (and space).

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 17 / 31

... polynomial space

Using an algorithm by [Gaspers, Lee, 2016], counting all independent sets in a
graph on n vertices in O(1.2355n) time, we obtain a polynomial-space algorithm
for Coloring with running time

∑
S⊆V

O(1.2355n−|S|) =

n∑
s=0

(
n

s

)
O(1.2377n−s) = O(2.2355n).

Here, we used the Binomial Theorem: (x+ y)n =
∑n

k=0

(
n
k

)
xn−kyk.

Theorem 5

Coloring can be solved in O(2.2355n) time and polynomial space.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 18 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 19 / 31

Counting Set Covers

#Set Covers

Input: A finite ground set V of elements, a collection H of subsets of V ,
and an integer k

Output: The number of ways to choose a k-tuple of sets (S1, . . . , Sk) with

Si ∈ H, i ∈ {1, . . . , k}, such that
⋃k

i=1 Si = V .

This instance has 1 · 3! = 6 covers with 3 sets and 3 · 4! = 72 covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be
enumerated in O∗(2n) time and space.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 20 / 31

Algorithm for Counting Set Covers

U : set of k-tuples (S1, . . . , Sk), where Si ∈ H, i ∈ {1, . . . , k},
Av = {(S1, . . . , Sk) ∈ U : v ∈

⋃
i∈{1,...,k} Si},

the number of covers with k sets is∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣
=
∑
S⊆V

(−1)|S|s(V \ S)k,

where s(X) is the number of sets in H that are subsets of X.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 21 / 31

Compute s(X)

For each X ⊆ V , compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

Arbitrarily order V = {v1, v2, . . . , vn}
g[X, i] = |{S ∈ H : (X ∩ {vi, . . . , vn}) ⊆ S ⊆ X}|
Note: g[X,n+ 1] = s(X)

Base case: g[X, 1] =

{
1 if X ∈ H

0 otherwise.

DP recurrence: g[X, i] =

{
g[X, i− 1] if vi−1 /∈ X

g[X \ {vi−1}, i− 1] + g[X, i− 1] otherwise.

Table filled by increasing i

Theorem 6

#Set Covers can be solved in O∗(2n) time and space, where n = |V |.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 22 / 31

Compute s(X)

For each X ⊆ V , compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

Arbitrarily order V = {v1, v2, . . . , vn}
g[X, i] = |{S ∈ H : (X ∩ {vi, . . . , vn}) ⊆ S ⊆ X}|
Note: g[X,n+ 1] = s(X)

Base case: g[X, 1] =

{
1 if X ∈ H

0 otherwise.

DP recurrence: g[X, i] =

{
g[X, i− 1] if vi−1 /∈ X

g[X \ {vi−1}, i− 1] + g[X, i− 1] otherwise.

Table filled by increasing i

Theorem 6

#Set Covers can be solved in O∗(2n) time and space, where n = |V |.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 22 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 23 / 31

Counting Set Partitions

#Ordered Set Partitions

Input: A finite ground set V of elements, a collection H of subsets of V ,
and an integer k

Output: The number of ways to choose a k-tuple of pairwise disjoint sets
(S1, . . . , Sk) with Si ∈ H, i ∈ {1, . . . , k}, such that

⋃k
i=1 Si = V .

(Now, Si ∩ Sj = ∅, if i 6= j.)

This instance has 1 · 3! = 6 ordered partitions with 3 sets.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 24 / 31

IE formulation

Lemma 7

The number of ordered k-partitions of a set system (V,H) is∑
S⊆V

(−1)|S|ak(V \ S),

where ak(X) denotes the number of k-tuples of sets S1, . . . , Sk ⊆ X with∑k
i=1 |Si| = |V |.

Proof (Sketch).

U : set of tuples (S1, . . . , Sk), where Si ∈ H, i ∈ {1, . . . , k}, and∑k
i=1 |Si| = |V |

Av = {(S1, . . . , Sk) ∈ U : v ∈
⋃

i∈{1,...,k} Si},
the number of ordered partitions with k sets is∣∣∣∣∣ ⋂

v∈V
Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|ak(V \ S).

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 25 / 31

IE formulation

Lemma 7

The number of ordered k-partitions of a set system (V,H) is∑
S⊆V

(−1)|S|ak(V \ S),

where ak(X) denotes the number of k-tuples of sets S1, . . . , Sk ⊆ X with∑k
i=1 |Si| = |V |.

Proof (Sketch).

U : set of tuples (S1, . . . , Sk), where Si ∈ H, i ∈ {1, . . . , k}, and∑k
i=1 |Si| = |V |

Av = {(S1, . . . , Sk) ∈ U : v ∈
⋃

i∈{1,...,k} Si},
the number of ordered partitions with k sets is∣∣∣∣∣ ⋂

v∈V
Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|
∣∣∣∣∣⋂
v∈S

Av

∣∣∣∣∣ = ∑
S⊆V

(−1)|S|ak(V \ S).

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 25 / 31

IE evaluation

For each X ⊆ V , we need to compute ak(X), the number of k-tuples of sets

S1, . . . , Sk ⊆ X with
∑k

i=1 |Si| = |V |.

Dynamic Programming

(1) Compute s[X, i] = |{Y ∈ H : Y ⊆ X and |Y | = i}| for each X ⊆ V and each
i ∈ {0, . . . , n}:

The entries s[·, i] are computed the same ways as s[·] in the previous section,
but keep only the sets in H of size i.

(2) A[`,m,X]: number of tuples (S1, . . . , S`) with Si ∈ H, Si ⊆ X, and∑`
i=1 |Si| = m.

Base case: A[1,m,X] = s[X,m]

DP recurrence: A[`,m,X] =
∑m−1

i=1 s[X, i] ·A[`− 1,m− i,X]

Table filled by increasing `

Note: ak(X) = A[k, |V |, X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 26 / 31

IE evaluation

For each X ⊆ V , we need to compute ak(X), the number of k-tuples of sets

S1, . . . , Sk ⊆ X with
∑k

i=1 |Si| = |V |.

Dynamic Programming

(1) Compute s[X, i] = |{Y ∈ H : Y ⊆ X and |Y | = i}| for each X ⊆ V and each
i ∈ {0, . . . , n}:

The entries s[·, i] are computed the same ways as s[·] in the previous section,
but keep only the sets in H of size i.

(2) A[`,m,X]: number of tuples (S1, . . . , S`) with Si ∈ H, Si ⊆ X, and∑`
i=1 |Si| = m.

Base case: A[1,m,X] = s[X,m]

DP recurrence: A[`,m,X] =
∑m−1

i=1 s[X, i] ·A[`− 1,m− i,X]

Table filled by increasing `

Note: ak(X) = A[k, |V |, X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 26 / 31

IE evaluation

For each X ⊆ V , we need to compute ak(X), the number of k-tuples of sets

S1, . . . , Sk ⊆ X with
∑k

i=1 |Si| = |V |.

Dynamic Programming

(1) Compute s[X, i] = |{Y ∈ H : Y ⊆ X and |Y | = i}| for each X ⊆ V and each
i ∈ {0, . . . , n}:

The entries s[·, i] are computed the same ways as s[·] in the previous section,
but keep only the sets in H of size i.

(2) A[`,m,X]: number of tuples (S1, . . . , S`) with Si ∈ H, Si ⊆ X, and∑`
i=1 |Si| = m.

Base case: A[1,m,X] = s[X,m]

DP recurrence: A[`,m,X] =
∑m−1

i=1 s[X, i] ·A[`− 1,m− i,X]

Table filled by increasing `

Note: ak(X) = A[k, |V |, X]

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 26 / 31

Algorithm for Counting Set Partitions

Theorem 8

#Ordered Set Partitions can be solved in O∗(2n) time and space.

Corollary 9

There is an algorithm computing the number of k-colorings of an input graph on
n vertices in O∗(2n) time and space.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 27 / 31

Algorithm for Counting Set Partitions

Theorem 8

#Ordered Set Partitions can be solved in O∗(2n) time and space.

Corollary 9

There is an algorithm computing the number of k-colorings of an input graph on
n vertices in O∗(2n) time and space.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 27 / 31

Covering and partitioning in polynomial space

Theorem 10
The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V,H) can be computed in polynomial space and

1 O∗(2n|H|) time, assuming that H can be enumerated in O∗(|H|) time and
polynomial space

2 O∗(3n) time, assuming membership in H can be decided in polynomial time,
and

3
∑n

j=0

(
n
j

)
TH(j) time, assuming there is a TH(j) time and polynomial space

algorithm to count for any W ⊆ V with |W | = j the number of sets S ∈ H
satisfying S ∩W = ∅.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 28 / 31

Covering and partitioning in polynomial space

Theorem 10
The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V,H) can be computed in polynomial space and

1 O∗(2n|H|) time, assuming that H can be enumerated in O∗(|H|) time and
polynomial space

2 O∗(3n) time, assuming membership in H can be decided in polynomial time,
and

3
∑n

j=0

(
n
j

)
TH(j) time, assuming there is a TH(j) time and polynomial space

algorithm to count for any W ⊆ V with |W | = j the number of sets S ∈ H
satisfying S ∩W = ∅.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 28 / 31

Covering and partitioning in polynomial space

Theorem 10
The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V,H) can be computed in polynomial space and

1 O∗(2n|H|) time, assuming that H can be enumerated in O∗(|H|) time and
polynomial space

2 O∗(3n) time, assuming membership in H can be decided in polynomial time,
and

3
∑n

j=0

(
n
j

)
TH(j) time, assuming there is a TH(j) time and polynomial space

algorithm to count for any W ⊆ V with |W | = j the number of sets S ∈ H
satisfying S ∩W = ∅.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 28 / 31

Covering and partitioning in polynomial space

Theorem 10
The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V,H) can be computed in polynomial space and

1 O∗(2n|H|) time, assuming that H can be enumerated in O∗(|H|) time and
polynomial space

2 O∗(3n) time, assuming membership in H can be decided in polynomial time,
and

3
∑n

j=0

(
n
j

)
TH(j) time, assuming there is a TH(j) time and polynomial space

algorithm to count for any W ⊆ V with |W | = j the number of sets S ∈ H
satisfying S ∩W = ∅.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 28 / 31

Exercise

A graph G = (V,E) is bipartite if V can be partitioned into two independent sets.
A matching in a graph G = (V,E) is a set of edges M ⊆ E such that no two
edges of M have an end-point in common.
The matching M in G is perfect if every vertex of G is contained in an edge of M .

#Bipartite Perfect Matchings

Input: Bipartite graph G = (V,E)
Output: The number of perfect matchings in G.

1 Design an algorithm with running time O∗
((

n
2

)
!
)
, where n = |V |.

2 Design a polynomial-space O∗(2n/2)-time inclusion-exclusion algorithm.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 29 / 31

Outline

1 The Principle of Inclusion-Exclusion

2 Counting Hamiltonian Cycles

3 Coloring

4 Counting Set Covers

5 Counting Set Partitions

6 Further Reading

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 30 / 31

Reading

Chapter 4, Inclusion-Exclusion in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion.
Proceedings of the 38th International Colloquium on Automata, Languages
and Programming (ICALP 2011): 42-59, 2011.

Advanced Reading

Chapter 7, Subset Convolution in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2016 31 / 31

	The Principle of Inclusion-Exclusion
	Counting Hamiltonian Cycles
	Coloring
	Counting Set Covers
	Counting Set Partitions
	Further Reading

