Computer Vision Week 4

COMP9517
Image Alignment
Approaches

• Can we use brute force?
• Direct alignment (optical flow)
• Feature based matching
Brute Force

• The simplest approach is a brute force search
 – Need to define image matching function
 • SSD, normalized correlation, etc.
 – Search over all parameters within a reasonable range:

• e.g. for translation:
 for tx=x0:step:x1,
 for ty=y0:step:y1,
 compare image1(x,y) to image2(x+tx,y+ty)
 end;
 end;

• Need to pick correct \(x0, x1 \) and \(step \)
 – What happens if \(step \) is too large?
Brute Force

• What if we want to search for more complicated transformation, e.g. projective?

\[
\begin{bmatrix}
w x' \\
w y' \\
w
\end{bmatrix} = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

for a=a0:astep:a1,
 for b=b0:bstep:b1,
 for c=c0:cstep:c1,
 for d=d0:dstep:d1,
 for e=e0:estep:e1,
 for f=f0:fstep:f1,
 for g=g0:gstep:g1,
 for h=h0:hstep:h1,
 compare imagem1 to H(image2)
 end
 end
 end
 end
 end
 end
end
Problems with brute force

• Not realistic
 – Search in $O(N^8)$ is problematic
 – Not clear how to set starting/stopping value and step

• What can we do?
 – Use pyramid search to limit starting/stopping/step values
 – For special cases (rotational panoramas), can reduce search slightly to $O(N^4)$:
 • $H = K_1R_1R_2^{-1}K_2^{-1}$ (4 DOF: f and rotation)

• Alternative: gradient decent on the error function
 – i.e. how do I tweak my current estimate to make the SSD error go down?
 – Can do sub-pixel accuracy
 – BIG assumption?
 • Images are already almost aligned (<2 pixels difference!)
 • Can improve with pyramid
 – Same tool as in **motion estimation**
Direct alignment: optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image
Why estimate optical flow?

• Many uses
 – Track object behavior
 – Correct for camera jitter (stabilization)
 – Align images (mosaics)
 – 3D shape reconstruction
 – Special effects
Problem definition: optical flow

• How to estimate pixel motion from image H to image I?
 • Solve pixel correspondence problem
 – given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
 • color constancy: a point in H looks the same in I
 – For grayscale images, this is intensity constancy
 • small motion: points do not move very far
Feature-based alignment

- It turns out that a rather implausible approach works remarkably well:

 1. Detect ‘feature points’ in both images
Feature-based alignment

• It turns out that a rather implausible approach works remarkably well:

1. Detect ‘feature points’ in both images
2. Find correspondences
Feature-based alignment

• It turns out that a rather implausible approach works remarkably well:

1. Detect ‘feature points’ in both images
2. Find correspondences
3. Find a parametric transformation
Finding correspondences

• Generating potential matches: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance
 – Exhaustive search
 • For each feature in one image, compute the distance to all features in the other image and find the “closest” ones (threshold or fixed number of top matches)
 – Fast approximate nearest neighbor search
 • Hierarchical spatial data structures (kd-trees, vocabulary trees)

Assumption: use SSD distance between descriptors
Nearest-neighbor matching

• Solve following problem for all feature vectors, \(\mathbf{x} \):

\[
\forall j \; \text{NN}(j) = \arg \min_i ||\mathbf{x}_i - \mathbf{x}_j||, \; i \neq j
\]

• Nearest-neighbor matching is the major computational bottleneck
 – Linear search performs \(dn^2 \) operations for \(n \) features and \(d \) dimensions
 – No exact methods are faster than linear search for \(d>10 \)
 – Approximate methods can be much faster, but at the cost of missing some correct matches. Failure rate gets worse for large datasets.
Feature space outlier rejection

• How can we tell which potential matches are more reliable?
• Heuristic: compare distance of **nearest** neighbor to that of **second** nearest neighbor
 – Ratio will be high for features that are not distinctive
 – Threshold of 0.8 provides good separation

K-d tree construction

Simple 2D example

Slide credit: Anna Atramentov
K-d tree query
Kd-Tree failure example
Approximate k-d tree matching

Key idea:
- Search k-d tree bins in order of distance from query
- Requires use of a priority queue
- Copes better with high dimensionality
- Many different varieties
 - Ball tree, Spill tree etc.