
ABSTRACT DATA TYPES (ADTS)

COMP1927 Computing 2 16x1

Sedgewick Chapter 4

ABSTRACTION

 To understand a system, it should be enough to

understand what its components do without knowing how

 Watching a television

 We operate the tv through its interface – remote control and buttons.

 We do not need to open the tv up and see inside to use it.

 When designing a new library, it is important to understand

 what are the abstract properties of the data types we want

provide?

 which operations do we need to create (destroy), query, and

manipulate objects of these types?

 Do we need to or want to know how FILE * is implemented? Or

just HOW to use it?

ABSTRACT DATA TYPES

 A data type is ...

 a set of values (atomic or structured values)

 a collection of operations on those values

 An abstract data type is ...

 an approach to implementing data types

 separates interface from implementation

 builders of the ADT provide an implementation

 Users/clients of the ADT see only the interface

 A client can not see the implementation through the
interface

 They do not know if you used an array, a linked list etc or
anything else.

 This allows the implementation to change without breaking
client code.

 Facilitates decomposing problems into smaller parts

ADTS IN C

 The interface is a contract between the client and

the implementation

 Defined in the .h file

 typedef of the ADT

 Function prototypes fix function names and types

 The implementation is the “inner workings” of the

ADT

 Implemented in .c file/s
 Structs – the actual representation of the data type

 function implementations

 static functions

 local typedefs

PUSHDOWN STACK OR LAST-IN, FIRST-OUT

(LIFO) QUEUE

 Two basic operations to manipulate a stack

 Insert (push) a new item

 Remove (pop) the most recently inserted item

 An operation to create a stack

 Create an empty stack

 An operation to query the state of the stack

 Check if stack is empty

 Applications

 backtracking search, function call stacks, evaluation of

expressions

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a

a

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b

a b

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b, push c

a b c

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b, push c, pop

a b

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b, push c, pop, push d

a b d

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

a

• List as stack

• add node to front of the list when pushing

• take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

push (c)c ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

pop()ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

push (c)

pop()

push (d)

d ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

EXAMPLE: BALANCING BRACKETS

 Example of stack ADT use on sample input:

 ([{ }])

Next char Stack Check

(start) (empty) -

((-

[([-

{ ([{ -

} ([{ vs }

] ([vs]

) (empty) (vs)

(eof) (empty) -

INFIX, PREFIX AND POSTFIX EXPRESSIONS

 Infix

 2 + 3

 Prefix

 + 2 3

 Postfix

 2 3 +

STACK ADT CLIENT EXERCISE: POSTFIX

EXPRESSION EVALUATION

 Task: Given an expression in postfix notation, return its value:

% ./eval_postfix “5 9 8 + 4 6 * * 7 + *”

2075

How can we evaluate a postfix expression?

• We use a stack

• When we encounter a number, push it

• When we encounter an operator, pop the two topmost numbers, apply

the operator to those numbers, and push the result on the stack

FIRST-IN, FIRST-OUT (FIFO) QUEUE

 Two basic operations to manipulate the queue

 insert (put) new item

 delete (get) the least recently inserted item

 An operation to create a queue

 Create an empty queue

 An operation to query the state of the queue

 Check if queue is empty

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

a b a

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

a b a b

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

put (c)a b a b c

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

put (c)

get()

a b b c

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

put (c)

get()

put (d)

a b b c d

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

a

put(a)

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

a b

put(a)

put (b)

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

a b c

put(a)

put (b)

put(c)

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

b c

put(a)

put (b)

put(c)

get()

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

b c

put(a)

put (b)

put(c)

get()

put(d)

d

TESTING

 Testing cannot establish that a program is correct

 would need to show for all possible inputs it produces the

correct output

 This is impossible except in trivial cases

 We can only choose this subset well!

 Different types of parameters require different types of

testing

 numeric: check the value, +ve, -ve, 0, large values, boundary

cases etc.

 string: check the length, empty, 1 element, many elements

 properties like increasing order, decreasing order, random order

EXERCISE

 Think of some test cases for finding the maximum in

an un-ordered array

BLACK BOX VS WHITE BOX TESTING

 Black Box Testing:

 Testing code from the outside:

 Checks behaviour

 Does tested input result in the correct output ?

 Program does not know about the underlying implementation

 If the implementation changes the tests should still pass

 White Box Testing:

 Testing code from the inside:

 Checks code structure

 Tests internal functions

 Tests rely on and can access the implementation

ASSERT BASED TESTING

 How to use assert:

 use while developing, testing and debugging a program to make

sure pre- and postconditions are valid

 not in production code!

 it aborts the program, error message useful to the programmer,

but not to the user of the application

 Use exception handlers in production code to terminate

gracefully with a sensible error message (if necessary)

