3. Branching Algorithms
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1 Introduction 1
2 Maximum Independent Set 3
2.1 Simple Analysis 3
2.2 Search Trees and Branching Numbers 5
2.3 Measure Based Analysis 6
2.4 Optimizing the measure 8
2.5 Exponential Time Subroutines 9
2.6 Structures that arise rarely 10
2.7 State Based Measures 10
3 Exercise on Max 2-CSP 11
4 Further Reading 12

1 Introduction

Recall: Maximal Independent Sets

- A vertex set $S \subseteq V$ of a graph $G=(V, E)$ is an independent set in G if there is no edge $u v \in E$ with $u, v \in S$.
- An independent set is maximal if it is not a subset of any other independent set.
- Examples:

Enumeration problem: Enumerate all maximal independent sets

```
Enum-MIS
    Input: graph G
    Output: all maximal independent sets of G
```


Maximal independent sets: $\{a, d\},\{b\},\{c\}$
Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_{G}[v]$.

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G,I)
Input : A graph $G=(V, E)$, an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.
$G^{\prime} \leftarrow G-N_{G}[I]$
if $V\left(G^{\prime}\right)=\emptyset$ then // G^{\prime} has no vertex

Output I

else
Select $v \in V\left(G^{\prime}\right)$ such that $d_{G^{\prime}}(v)=\delta\left(G^{\prime}\right) \quad / / v$ has min degree in G^{\prime}
Run enum-mis $(G, I \cup\{u\})$ for each $u \in N_{G^{\prime}}[v]$

Running Time Analysis

Define $L(n)=$ largest number of leaves in any search tree of enum-mis for an instance with $\left|V\left(G^{\prime}\right)\right| \leq n$.
Note: $L(n)$ is non-decreasing.
Suppose $d_{G^{\prime}}(v)=d$ generates a maximum number of leaves. Then,

$$
L(n) \leq(d+1) \cdot L(n-(d+1))=O\left((d+1)^{n /(d+1)}\right)
$$

For $s>0$, the function $f(s)=s^{1 / s}$ has its maximum value for $s=e$ and for integer s the maximum value of $f(s)$ is when $s=3$.

Since the height of the search trees is $\leq\left|V\left(G^{\prime}\right)\right|$, we obtain:
Theorem 1. Algorithm enum-mis has running time $O^{*}\left(3^{n / 3}\right) \subseteq O\left(1.4423^{n}\right)$, where $n=|V|$.
Corollary 2. A graph on n vertices has $O\left(3^{n / 3}\right)$ maximal independent sets.

Constraints Based Analysis

Suppose $L(n)=2^{\alpha \cdot n}, \alpha>0$.
We constrain for each $d \geq 0$, that

$$
2^{\alpha \cdot n} \geq(d+1) \cdot 2^{\alpha \cdot(n-(d+1))}
$$

or, equivalently,

$$
1 \geq(d+1) \cdot 2^{\alpha \cdot(-(d+1))},
$$

and, since we would like to prove a small running time bound, we minimize α subject to these constraints.
This amounts to solving a convex program, which gives $\alpha=(1 / 3) \cdot \log _{2} 3$ and $L(n)=2^{(n / 3) \cdot \log _{2} 3}=3^{n / 3}$.

Running Time Lower Bound

Theorem 3. There is an infinite family of graphs with $\Omega\left(3^{n / 3}\right)$ maximal independent sets.

Branching Algorithm

- Selection: Select a local configuration of the problem instance
- Recursion: Recursively solve subinstances
- Combination: Compute an optimal solution of the instance based on the optimal solutions of the subinstances
- Simplification rule: 1 recursive call
- Branching rule: ≥ 2 recursive calls

2 Maximum Independent Set

```
Maximum Independent Set
    Input: graph G
    Output: A largest independent set of G.
```


Exercise

Suppose there exists a $O^{*}\left(1.2^{n}\right)$ time algorithm, which, given a graph G on n vertices, computes the size of a largest independent set of G.

Design an algorithm, which, given a graph G, finds a largest independent set of G in time $O^{*}\left(1.2^{n}\right)$.

Solution Idea

- Compute k, the size of a largest independent set of G
- Find a vertex v belonging to an independent set of size k
- We can do this by going through each vertex u of G, and checking whether $G-N_{G}[u]$ has an independent set of size $k-1$
- Recurse on $\left(G-N_{G}[v], k-1\right)$

Branching Algorithm for Maximum Independent Set

2.1 Simple Analysis

Lemma 4 (Simple Analysis Lemma). Let

- A be a branching algorithm
- $\alpha>0, c \geq 0$ be constants
such that on input I, A calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(|I|^{c}\right)$, such that

$$
\begin{align*}
(\forall i: 1 \leq i \leq k) \quad\left|I_{i}\right| & \leq|I|-1, \text { and } \tag{1}\\
2^{\alpha \cdot\left|I_{1}\right|} & +\cdots+2^{\alpha \cdot\left|I_{k}\right|} \leq 2^{\alpha \cdot|I|} . \tag{2}
\end{align*}
$$

Then A solves any instance I in time $O\left(|I|^{c+1}\right) \cdot 2^{\alpha \cdot|I|}$.

```
Algorithm mis( \(G\) )
Input : A graph \(G=(V, E)\).
Output: The size of a maximum i.s. of \(G\).
if \(\Delta(G) \leq 2\) then \(\quad / / G\) has max degree \(\leq 2\)
        return the size of a maximum i.s. of \(G\) in polynomial time
else if \(\exists v \in V: d(v)=1\) then \(\quad / / v\) has degree 1
    return \(1+\operatorname{mis}(G-N[v])\)
else if \(G\) is not connected then
    Let \(G_{1}\) be a connected component of \(G\)
    return \(\operatorname{mis}\left(G_{1}\right)+\operatorname{mis}\left(G-V\left(G_{1}\right)\right)\)
else
    Select \(v \in V\) s.t. \(d(v)=\Delta(G) \quad / / v\) has max degree
    return \(\max (1+\operatorname{mis}(G-N[v]), \operatorname{mis}(G-v))\)
```

Proof. By induction on $|I|$. W.l.o.g., replace the hypotheses' O statement with a simple inequality, and for the base case assume that the algorithm returns the solution to an empty instance in time $1 \leq|I|^{c+1} 2^{\alpha \cdot|I|}$.

Suppose the lemma holds for all instances of size at most $|I|-1 \geq 0$, then the running time of algorithm A on instance I is

$$
\begin{array}{rlr}
T_{A}(I) & \leq|I|^{c}+\sum_{i=1}^{k} T_{A}\left(I_{i}\right) & \text { (by definition) } \\
& \leq|I|^{c}+\sum^{\mid}\left|I_{i}\right|^{c+1} 2^{\alpha \cdot\left|I_{i}\right|} & \text { (by the inductive hypothesis) } \\
& \leq|I|^{c}+(|I|-1)^{c+1} \sum 2^{\alpha \cdot\left|I_{i}\right|} & \text { (by (11) } \\
& \leq|I|^{c}+(|I|-1)^{c+1} 2^{\alpha \cdot|I|} & \text { (by } 22 \text {) } \\
& \leq|I|^{c+1} 2^{\alpha \cdot|I|} . &
\end{array}
$$

The final inequality uses that $\alpha \cdot|I|>0$ and holds for any $c \geq 0$.

Simple Analysis for mis

- At each node of the search tree: $O\left(n^{2}\right)$
- G disconnected:

$$
\begin{equation*}
(\forall s: 1 \leq s \leq n-1) \quad 2^{\alpha \cdot s}+2^{\alpha \cdot(n-s)} \leq 2^{\alpha \cdot n} . \tag{3}
\end{equation*}
$$

always satisfied by convexity of the function 2^{x}

- Branch on vertex of degree $d \geq 3$

$$
\begin{equation*}
(\forall d: 3 \leq d \leq n-1) \quad 2^{\alpha \cdot(n-1)}+2^{\alpha \cdot(n-1-d)} \leq 2^{\alpha n} . \tag{4}
\end{equation*}
$$

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$
\begin{equation*}
2^{-\alpha}+2^{\alpha \cdot(-1-d)} \leq 1 . \tag{5}
\end{equation*}
$$

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for $d=3$ is sufficient as all other constraints are weaker).

Alternatively, set $x:=2^{\alpha}$, compute the unique positive real root of each of the characteristic polynomials

$$
c_{d}(x):=x^{-1}+x^{-1-d}-1,
$$

and take the maximum of these roots [Kullmann '99].

d	x	α
3	1.3803	0.4650
4	1.3248	0.4057
5	1.2852	0.3620
6	1.2555	0.3282
7	1.2321	0.3011

Simple Analysis: Result

- use the Simple Analysis Lemma with $c=2$ and $\alpha=0.464959$
- running time of Algorithm mis upper bounded by $O\left(n^{3}\right) \cdot 2^{0.464959 \cdot n}=O\left(2^{0.4650 \cdot n}\right)$ or $O\left(1.3803^{n}\right)$

Lower bound

$$
T(n)=T(n-5)+T(n-3)
$$

- for this graph, P_{n}^{2}, the worst case running time is $1.1938 \ldots{ }^{n} \cdot \operatorname{poly}(n)$
- Run time of algo mis is $\Omega\left(1.1938^{n}\right)$

Worst-case running time - a mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega\left(1.1938^{n}\right)$
- upper bound $O\left(1.3803^{n}\right)$

2.2 Search Trees and Branching Numbers

Search Trees

Denote $\mu(I):=\alpha \cdot|I|$.

Example: execution of mis on a P_{n}^{2}

Branching number: Definition

Consider a constraint

$$
2^{\mu(I)-a_{1}}+\cdots+2^{\mu(I)-a_{k}} \leq 2^{\mu(I)}
$$

Its branching number is

$$
2^{-a_{1}}+\cdots+2^{-a_{k}}
$$

and is denoted by

$$
\left(a_{1}, \ldots, a_{k}\right)
$$

Clearly, any constraint with branching number at most 1 is satisfied.

Branching numbers: Properties

Dominance For any a_{i}, b_{i} such that $a_{i} \geq b_{i}$ for all $i, 1 \leq i \leq k$,

$$
\left(a_{1}, \ldots, a_{k}\right) \leq\left(b_{1}, \ldots, b_{k}\right)
$$

as $2^{-a_{1}}+\cdots+2^{-a_{k}} \leq 2^{-b_{1}}+\cdots+2^{-b_{k}}$.
In particular, for any $a, b>0$,

$$
\text { either } \quad(a, a) \leq(a, b) \quad \text { or } \quad(b, b) \leq(a, b)
$$

Balance If $0<a \leq b$, then for any ε such that $0 \leq \varepsilon \leq a$,

$$
(a, b) \leq(a-\varepsilon, b+\varepsilon)
$$

by convexity of 2^{x}.

Exercises

1. Let A be a branching algorithm, such that, on any input of size at most n its search tree has height at most n and for the number of leaves $L(n)$, we have

$$
L(n) \leq 3 \cdot L(n-2)
$$

Upper bound the running time of A, assuming it spends only polynomial time at each node of the search tree.
2. Same question, except that

$$
L(n) \leq \max \left\{\begin{array}{l}
2 \cdot L(n-3) \\
L(n-2)+L(n-4) \\
2 \cdot L(n-2) \\
L(n-1)
\end{array}\right.
$$

2.3 Measure Based Analysis

- Goal, idea
- capture more structural changes when branching into subinstances
- Means
- potential-function method, a.k.a., Measure \S^{G} Conquer
- Example: Algorithm mis
- advantage when degrees of vertices decrease

Multivariate recurrences

- Model running time of mis by

$$
T\left(n_{1}, n_{2}, \ldots\right), \text { short } T\left(\left\{n_{i}\right\}_{i \geq 1}\right)
$$

where $n_{i}:=|\{v \in V: d(v)=i\}|$.

- $G-v$: neighbors' degrees decrease
- $G-N[v]$: a vertex in $N^{2}[v]$ has its degree decreased

Multivariate recurrences (2)

- We obtain the following recurrence where the maximum ranges over all $d \geq 3$, all $p_{i}, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_{i}=d$ and all k such that $2 \leq k \leq d$:

$$
T\left(\left\{n_{i}\right\}_{i \geq 1}\right)=\max _{d, p_{2}, \ldots, p_{d}, k}\left\{\begin{array}{c}
T\left(\left\{n_{i}-p_{i}+p_{i+1}-[d=i]\right\}_{i \geq 1}\right) \tag{6}\\
+T\left(\left\{n_{i}-p_{i}-[d=i]-[k=i]\right.\right. \\
\left.+[k=i+1]\}_{i \geq 1}\right)
\end{array}\right.
$$

where the Iverson bracket $[F]=\left\{\begin{array}{l}1 \text { if } F \text { true } \\ 0 \text { otherwise }\end{array}\right.$

Solve multivariate recurrence

- restrict to max degree 5
- [Eppstein 2004]: there exists a set of weights $w_{1}, \ldots, w_{5} \in \mathbb{R}^{+}$such that a solution to (6) is within a polynomial factor of a solution to the corresponding univariate weighted model $\left(T\left(\sum_{i=1}^{5} \omega_{i} n_{i}\right)=\max \ldots\right)$.

Definition 5. A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals

From recurrences ...

$$
\begin{gathered}
\mu(G):=\sum_{i=1}^{5} w_{i} n_{i} \\
(i \geq 1) \quad w_{i} \geq 0 \\
(i \geq 2) \quad w_{i} \geq w_{i-1} \\
(\forall d: 2 \leq d \leq 5) \quad h_{d}:=\min _{2 \leq i \leq d}\left\{w_{i}-w_{i-1}\right\}
\end{gathered}
$$

By [Eppstein 2004], there exist weights w_{i} such that a solution to (6) corresponds to a solution to the following recurrence, where the maximum ranges over all $d, 3 \leq d \leq 5$, and all $p_{i}, 2 \leq i \leq d$, such that $\sum_{i=2}^{d} p_{i}=d$,

$$
T(\mu(G))=\max _{d, p_{2}, \ldots, p_{d}, k}\left\{\begin{array}{l}
T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)\right) \\
+T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}\right)
\end{array}\right.
$$

... to constraints

$$
\begin{aligned}
T(\mu(G)) \geq & T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)\right) \\
& +T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}\right)
\end{aligned}
$$

for all $d, 3 \leq d \leq 5$, and all $p_{i}, 2 \leq i \leq d$, such that $\sum_{i=2}^{d} p_{i}=d$.

Measure Based Analysis

Lemma 6 (Measure Analysis Lemma). Let

- A be a branching algorithm
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,
such that on input I, A calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(|I|^{c}\right)$, such that

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1, \text { and } \tag{7}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} \tag{8}
\end{align*}
$$

Then A solves any instance I in time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu(I)}$.

Applying the lemma

$$
\begin{aligned}
w_{i} & \geq 0 \\
w_{i} & \geq w_{i-1} \\
2^{\mu(G)} & \geq 2^{\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}} \\
& \Leftrightarrow \\
1 & \geq 2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}} \\
& \begin{array}{|c|c|c|}
\hline i & w_{i} & h_{i} \\
\hline 1 & 0 & 0 \\
2 & 0.25 & 0.25 \\
3 & 0.35 & 0.10 \\
4 & 0.38 & 0.03 \\
5 & 0.40 & 0.02 \\
\hline
\end{array}
\end{aligned}
$$

These values for w_{i} satisfy all the constraints and $\mu(G) \leq 2 n / 5$ for any graph of max degree ≤ 5. Taking $c=2$ and $\eta(G)=n$, the Measure Analysis Lemma shows that mis has run time $O\left(n^{3}\right) 2^{2 n / 5}=O\left(1.3196^{n}\right)$ on graphs of max degree ≤ 5.

2.4 Optimizing the measure

Compute optimal weights

- By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for h_{d}

$$
\begin{array}{cc}
(\forall d: 2 \leq d \leq 5) & h_{d}:=\min _{2 \leq i \leq d}\left\{w_{i}-w_{i-1}\right\} \\
& \downarrow \\
(\forall i, d: 2 \leq i \leq d \leq 5) & h_{d} \leq w_{i}-w_{i-1} .
\end{array}
$$

Use existing convex programming solvers to find optimum weights.

convex program in AMPL

```
param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg \le i
var Wmax; # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
    Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
    g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
    h[d] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
    2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
    2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])
+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
    p2+p3+p4+p5=5}:
    2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])
+2~}(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
```


Optimal weights

i	w_{i}	h_{i}
1	0	0
2	0.206018	0.206018
3	0.324109	0.118091
4	0.356007	0.031898
5	0.358044	0.002037

- use the Measure Analysis Lemma with $\mu(G)=\sum_{i=1}^{5} w_{i} n_{i} \leq 0.358044 \cdot n, c=2$, and $\eta(G)=n$
- mis has running time $O\left(n^{3}\right) 2^{0.358044 \cdot n}=O\left(1.2817^{n}\right)$

2.5 Exponential Time Subroutines

Lemma 7 (Combine Analysis Lemma). Let

- A be a branching algorithm and B be an algorithm,
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \mu^{\prime}(\cdot), \eta(\cdot)$ be three measures for the instances of A and B,
such that $\mu^{\prime}(I), \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu^{\prime}(\bar{I})}$, or calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(|I|^{c}\right)$, such that

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1, \text { and } \tag{9}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} \tag{10}
\end{align*}
$$

Then A solves any instance I in time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu(I)}$.

Algorithm mis on general graphs

- use the Combine Analysis Lemma with $A=B=\mathbf{m i s}, c=2, \mu(G)=0.35805 n, \mu^{\prime}(G)=\sum_{i=1}^{5} w_{i} n_{i}$, and $\eta(G)=n$
- for every instance $G, \mu^{\prime}(G) \leq \mu(G)$ because $\forall i, w_{i} \leq 0.35805$
- for each $d \geq 6$,

$$
(0.35805,(d+1) \cdot 0.35805) \leq 1
$$

- Thus, Algorithm mis has running time $O\left(1.2817^{n}\right)$ for graphs of arbitrary degrees

2.6 Structures that arise rarely

Rare Configurations

- Branching on a local configuration C does not influence overall running time if C is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm
- Can be proved formally by using measure

$$
\mu^{\prime}(I):= \begin{cases}\mu(I)+c & \text { if } C \text { may be selected in the current subtree } \\ \mu(I) & \text { otherwise. }\end{cases}
$$

Avoid branching on regular instances in mis

else
Select $v \in V$ such that
(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of minimum degree
return max $(1+\boldsymbol{\operatorname { m i s }}(G-N[v]), \boldsymbol{\operatorname { m i s }}(G-v))$

New measure:

$$
\mu^{\prime}(G)=\mu(G)+\sum_{d=3}^{5}[G \text { has a } d \text {-regular subgraph }] \cdot C_{d}
$$

where $C_{d}, 3 \leq d \leq 5$, are constants.

Resulting Branching numbers

For each $d, 3 \leq d \leq 5$ and all $p_{i}, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_{i}=d$ and $p_{d} \neq d$,

$$
\left(w_{d}+\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right), w_{d}+\sum_{i=2}^{d} p_{i} \cdot w_{i}+h_{d}\right) .
$$

All these branching numbers are at most 1 with the optimal set of weights

Result

i	w_{i}	h_{i}
1	0	0
2	0.207137	0.207137
3	0.322203	0.115066
4	0.343587	0.021384
5	0.347974	0.004387

Thus, the modified Algorithm mis has running time $O\left(2^{0.3480 \cdot n}\right)=O\left(1.2728^{n}\right)$.

2.7 State Based Measures

State based measures

- "bad" branching always followed by "good" branchings
- amortize over branching numbers

$$
\mu^{\prime}(I):=\mu(I)+\Psi(I),
$$

where $\Psi: \mathcal{I} \rightarrow \mathbb{R}^{+}$depends on global properties of the instance.

3 Exercise on Max 2-CSP

Max 2-CSP

Input: A graph $G=(V, E)$ and a set S of score functions containing

- a score function $s_{e}:\{0,1\}^{2} \rightarrow \mathbb{N}_{0}$ for each edge $e \in E$,
- a score function $s_{v}:\{0,1\} \rightarrow \mathbb{N}_{0}$ for each vertex $v \in V$, and
- a score "function" $s_{\emptyset}:\{0,1\}^{0} \rightarrow \mathbb{N}_{0}$ (which takes no arguments and is just a constant convenient for bookkeeping).

Output: The maximum score $s(\phi)$ of an assignment $\phi: V \rightarrow\{0,1\}$:

$$
s(\phi):=s_{\emptyset}+\sum_{v \in V} s_{v}(\phi(v))+\sum_{u v \in E} s_{u v}(\phi(u), \phi(v)) .
$$

1. Design simplification rules for vertices of degree ≤ 2.
2. Using the simple analysis, design and analyze an $O^{*}\left(2^{m / 4}\right)$ time algorithm, where $m=|E|$.
3. Use the measure $\mu:=w_{e} \cdot m-\left(\sum_{v \in V} w_{d_{G}(v)}\right)$ to improve the analysis to $O^{*}\left(2^{m / 5}\right)$.

Solution sketch

Simplification rules
S0 If there is a vertex y with $d(y)=0$, then set $s_{\emptyset}=s_{\emptyset}+\max _{C \in\{0,1\}} s_{y}(C)$ and delete y from G.
S1 If there is a vertex y with $d(y)=1$, then denote $N(y)=\{x\}$ and replace the instance with $\left(G^{\prime}, S^{\prime}\right)$ where $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=G-y$ and S^{\prime} is the restriction of S to V^{\prime} and E^{\prime} except that for all $C \in\{0,1\}$ we set

$$
s_{x}^{\prime}(C)=s_{x}(C)+\max _{D \in\{0,1\}}\left\{s_{x y}(C, D)+s_{y}(D)\right\} .
$$

S2 If there is a vertex y with $d(y)=2$, then denote $N(y)=\{x, z\}$ and replace the instance with $\left(G^{\prime}, S^{\prime}\right)$ where $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=(V-y,(E \backslash\{x y, y z\}) \cup\{x z\})$ and S^{\prime} is the restriction of S to V^{\prime} and E^{\prime}, except that for $C, D \in\{0,1\}$ we set

$$
s_{x z}^{\prime}(C, D)=s_{x z}(C, D)+\max _{F \in\{0,1\}}\left\{s_{x y}(C, F)+s_{y z}(F, D)+s_{y}(F)\right\}
$$

if there was already an edge $x z$, discarding the first term $s_{x z}(C, D)$ if there was not.
Branching rules

B Let y be a vertex of maximum degree. There is one subinstance $\left(G^{\prime}, s^{C}\right)$ for each color $C \in\{0,1\}$, where $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=G-y$ and s^{C} is the restriction of s to V^{\prime} and E^{\prime}, except that we set

$$
\left(s^{C}\right)_{\emptyset}=s_{\emptyset}+s_{y}(C)
$$

and, for every neighbor x of y and every $D \in\{0,1\}$,

$$
\left(s^{C}\right)_{x}(D)=s_{x}(D)+s_{x y}(D, C)
$$

- Branching on a vertex of degree ≥ 4 removes ≥ 4 edges from both subinstances
- Branching on a vertex of degree 3 removes ≥ 6 edges from both subinstances since G is 3-regular.

The recurrence $T(m) \leq 2 \cdot T(m-4)$ solves to $2^{m / 4}$
Using the measure

$$
\mu:=w_{e} \cdot m+\left(\sum_{v \in V} w_{d_{G}(v)}\right)
$$

we constrain that

$$
\begin{array}{rlrl}
w_{d} & \leq 0 & \text { for all } d \geq 0 \text { to ensure that } \mu \leq w_{e} m \\
d \cdot w_{e} / 2+w_{d} & \geq 0 & & \text { for all } d \geq 0 \text { to ensure that } \mu(G) \geq 0 \\
-w_{0} & \leq 0 & & \text { constraint for S0 } \\
-w_{2}-w_{e} & \leq 0 & & \text { constraint for S2 }
\end{array}
$$

$$
1-w_{d}-d \cdot w_{e}-d \cdot\left(w_{j}-w_{j-1}\right) \leq 0
$$

for all $d, j \geq 3$.
Using $w_{e}=0.2, w_{0}=0, w_{1}=-0.05, w_{2}=-0.2, w_{3}=-0.05$, and $w_{d}=0$ for $d \geq 4$, all constraints are satisfied and $\mu(G) \leq m / 5$ for each graph G.

4 Further Reading

- Chapter 2, Branching in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Chapter 6, Measure \& Conquer in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Chapter 2, Branching Algorithms in Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.

