3. Branching Algorithms
COMP6741: Parameterized and Exact Computation
Serge Gaspers
Semester 2, 2015

Contents

1 Introduction 1

2 Maximum Independent Set 3
 2.1 Simple Analysis ... 3
 2.2 Search Trees and Branching Numbers 5
 2.3 Measure Based Analysis 6
 2.4 Optimizing the measure 8
 2.5 Exponential Time Subroutines 9
 2.6 Structures that arise rarely 10
 2.7 State Based Measures 10

3 Exercise on Max 2-CSP 11

4 Further Reading 12

1 Introduction

Recall: Maximal Independent Sets

- A vertex set $S \subseteq V$ of a graph $G = (V, E)$ is an independent set in G if there is no edge $uv \in E$ with $u, v \in S$.
- An independent set is maximal if it is not a subset of any other independent set.
- Examples:

Enumeration problem: Enumerate all maximal independent sets

<table>
<thead>
<tr>
<th>ENUM-MIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: graph G</td>
</tr>
<tr>
<td>Output: all maximal independent sets of G</td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d}
\end{array} \]
Maximal independent sets: \{a, d\}, \{b\}, \{c\}

Note: Let \(v \) be a vertex of a graph \(G \). Every maximal independent set contains a vertex from \(N_G[v] \).

Branching Algorithm for Enum-MIS

Algorithm \textit{enum-mis}(\(G, I \))

Input: A graph \(G = (V, E) \), an independent set \(I \) of \(G \).

Output: All maximal independent sets of \(G \) that are supersets of \(I \).

1. \(G' \leftarrow G - N_G[I] \)
2. if \(V(G') = \emptyset \) then // \(G' \) has no vertex
 3. Output \(I \)
3. else
 4. Select \(v \in V(G') \) such that \(d_{G'}(v) = \delta(G') \) // \(v \) has min degree in \(G' \)
 5. Run \textit{enum-mis}(\(G, I \cup \{u\} \)) for each \(u \in N_{G'}[v] \)

Running Time Analysis

Define \(L(n) = \text{largest number of leaves in any search tree of } \textit{enum-mis} \text{ for an instance with } |V(G')| \leq n \).

Note: \(L(n) \) is non-decreasing.

Suppose \(d_{G'}(v) = d \) generates a maximum number of leaves. Then,

\[
L(n) \leq (d + 1) \cdot L(n - (d + 1)) = O\left((d + 1)^{n/(d+1)}\right)
\]

For \(s > 0 \), the function \(f(s) = s^{1/s} \) has its maximum value for \(s = e \) and for integer \(s \) the maximum value of \(f(s) \) is when \(s = 3 \).

Since the height of the search trees is \(\leq |V(G')| \), we obtain:

Theorem 1. *Algorithm* \textit{enum-mis} *has running time* \(O^*(3^{n/3}) \subseteq O(1.4423^n) \), where \(n = |V| \).

Corollary 2. A graph on \(n \) vertices has \(O(3^{n/3}) \) maximal independent sets.

Constraints Based Analysis

Suppose \(L(n) = 2^{\alpha n} \), \(\alpha > 0 \).

We constrain for each \(d \geq 0 \), that

\[
2^{\alpha n} \geq (d + 1) \cdot 2^{\alpha(n - (d + 1))},
\]

or, equivalently,

\[
1 \geq (d + 1) \cdot 2^{\alpha - (d + 1)},
\]

and, since we would like to prove a small running time bound, we **minimize** \(\alpha \) subject to these constraints.

This amounts to solving a convex program, which gives \(\alpha = (1/3) \cdot \log_2 3 \) and \(L(n) = 2^{(n/3) \cdot \log_2 3} = 3^{n/3} \).

Running Time Lower Bound

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{triangle.png}
\end{array}
\]

Theorem 3. There is an infinite family of graphs with \(\Omega(3^{n/3}) \) maximal independent sets.
Branching Algorithm

- **Selection**: Select a local configuration of the problem instance
- **Recursion**: Recursively solve subinstances
- **Combination**: Compute an optimal solution of the instance based on the optimal solutions of the subinstances
- **Simplification** rule: 1 recursive call
- **Branching** rule: \(\geq 2 \) recursive calls

2 Maximum Independent Set

Maximum Independent Set

<table>
<thead>
<tr>
<th>Input: graph (G)</th>
<th>Output: A largest independent set of (G).</th>
</tr>
</thead>
</table>

Exercise

Suppose there exists a \(O^*(1.2^n) \) time algorithm, which, given a graph \(G \) on \(n \) vertices, computes the size of a largest independent set of \(G \).

Design an algorithm, which, given a graph \(G \), finds a largest independent set of \(G \) in time \(O^*(1.2^n) \).

Solution Idea

- Compute \(k \), the size of a largest independent set of \(G \)
- Find a vertex \(v \) belonging to an independent set of size \(k \)
 - We can do this by going through each vertex \(u \) of \(G \), and checking whether \(G - N_G[u] \) has an independent set of size \(k - 1 \)
- Recurse on \((G - N_G[v], k - 1) \)

Branching Algorithm for Maximum Independent Set

2.1 Simple Analysis

Lemma 4 (Simple Analysis Lemma). *Let*

- \(A \) be a branching algorithm
- \(\alpha > 0, c \geq 0 \) be constants

such that on input \(I \), \(A \) calls itself recursively on instances \(I_1, \ldots, I_k \), but, besides the recursive calls, uses time \(O(|I|^c) \), such that

\[
(\forall i : 1 \leq i \leq k) \quad |I_i| \leq |I| - 1, \quad \text{and} \quad 2^{\alpha |I_i|} + \ldots + 2^{\alpha |I_k|} \leq 2^{\alpha |I|}.
\]

Then \(A \) solves any instance \(I \) in time \(O(|I|^{c+1}) \cdot 2^{\alpha |I|} \).
Algorithm \textit{mis}(G)

\textbf{Input} : A graph \(G = (V,E)\).

\textbf{Output}: The size of a maximum i.s. of \(G\).

1 if \(\Delta(G) \leq 2\) then \(\quad // G\ has\ max\ degree\ \leq 2\)

2 \hspace{1em} \textbf{return} the size of a maximum i.s. of \(G\) in polynomial time

3 else if \(\exists v \in V : d(v) = 1\) then \(\quad // v\ has\ degree\ 1\)

4 \hspace{1em} \textbf{return} \(1 + \text{mis}(G - N[v])\)

5 else if \(G\) is not connected then

6 \hspace{1em} Let \(G_1\) be a connected component of \(G\)

7 \hspace{1em} \textbf{return} \(\text{mis}(G_1) + \text{mis}(G - V(G_1))\)

8 else

9 \hspace{1em} Select \(v \in V\) s.t. \(d(v) = \Delta(G)\) \(\quad // v\ has\ max\ degree\)

10 \hspace{1em} \textbf{return} \(\max(1 + \text{mis}(G - N[v]), \text{mis}(G - v))\)

Proof. By induction on \(|I|\). W.l.o.g., replace the hypotheses’ \(O\) statement with a simple inequality, and for the base case assume that the algorithm returns the solution to an empty instance in time \(1 \leq |I| c + \frac{1}{2} \alpha \cdot |I|\).

Suppose the lemma holds for all instances of size at most \(|I| - 1 \geq 0\), then the running time of algorithm \(A\) on instance \(I\) is

\[
T_A(I) \leq |I|^c + \sum_{i=1}^{k} T_A(I_i) \quad \text{(by definition)}
\]

\[
\leq |I|^c + \sum |I_i|^{c+1} 2^{\alpha \cdot |I_i|} \quad \text{(by the inductive hypothesis)}
\]

\[
\leq |I|^c + (|I| - 1)^{c+1} \sum 2^{\alpha \cdot |I_i|} \quad \text{(by (2))}
\]

\[
\leq |I|^c + (|I| - 1)^{c+1} 2^{|I|} \quad \text{(by (1))}
\]

The final inequality uses that \(\alpha \cdot |I| > 0\) and holds for any \(c \geq 0\).

Simple Analysis for \textit{mis}

- At each node of the search tree: \(O(n^2)\)

- \(G\) disconnected:

\[
(\forall s : 1 \leq s \leq n-1) \quad 2^{\alpha \cdot s} + 2^{\alpha \cdot (n-s)} \leq 2^{\alpha \cdot n}. \quad \text{(3)}
\]

always satisfied by convexity of the function \(2^x\)

- Branch on vertex of degree \(d \geq 3\)

\[
(\forall d : 3 \leq d \leq n-1) \quad 2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \leq 2^{\alpha n}. \quad \text{(4)}
\]

Dividing all these terms by \(2^{\alpha n}\), the constraints become

\[
2^{-\alpha} + 2^{\alpha \cdot (1-d)} \leq 1. \quad \text{(5)}
\]

Compute optimum \(\alpha\)

The minimum \(\alpha\) satisfying the constraints is obtained by solving a convex mathematical program minimizing \(\alpha\) subject to the constraints (the constraint for \(d = 3\) is sufficient as all other constraints are weaker).

Alternatively, set \(x := 2^{\alpha}\), compute the unique positive real root of each of the \textit{characteristic polynomials}

\[
c_d(x) := x^{-1} + x^{-1-d} - 1,
\]
and take the maximum of these roots [Kullmann ’99].

<table>
<thead>
<tr>
<th>d</th>
<th>x</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.3803</td>
<td>0.4650</td>
</tr>
<tr>
<td>4</td>
<td>1.3248</td>
<td>0.4057</td>
</tr>
<tr>
<td>5</td>
<td>1.2852</td>
<td>0.3620</td>
</tr>
<tr>
<td>6</td>
<td>1.2555</td>
<td>0.3282</td>
</tr>
<tr>
<td>7</td>
<td>1.2321</td>
<td>0.3011</td>
</tr>
</tbody>
</table>

Simple Analysis: Result

- use the Simple Analysis Lemma with $c = 2$ and $\alpha = 0.464959$
- running time of Algorithm mis upper bounded by $O(n^3) \cdot 2^{0.464959 \cdot n} = O(2^{0.4650 \cdot n})$ or $O(1.3803^n)$

Lower bound

\[
T(n) = T(n - 5) + T(n - 3)
\]

- for this graph, P^2_n, the worst case running time is $1.1938 \ldots n \cdot \text{poly}(n)$
- Run time of algo mis is $\Omega(1.1938^n)$

Worst-case running time — a mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega(1.1938^n)$
- upper bound $O(1.3803^n)$

2.2 Search Trees and Branching Numbers

Search Trees

Denote $\mu(I) := \alpha \cdot |I|$.

Example: execution of mis on a P^2_n

\[
\begin{align*}
\mu(I) & \quad \mu(I_1) \quad \mu(I_2) \quad \cdots \quad \mu(I_k) \\
\mu(I_1) & \quad \mu(I_2) \quad \cdots \quad \mu(I_k) \\
\mu(I_1) & \quad \mu(I_2) \quad \cdots \quad \mu(I_k) \\
\mu(I_1) & \quad \mu(I_2) \quad \cdots \quad \mu(I_k) \\
\end{align*}
\]
Branching number: Definition
Consider a constraint
\[2^{\mu(I)} - a_1 + \ldots + 2^{\mu(I)} - a_k \leq 2^{\mu(I)}. \]
Its branching number is
\[2^{-a_1} + \ldots + 2^{-a_k}, \]
and is denoted by
\[(a_1, \ldots, a_k). \]
Clearly, any constraint with branching number at most 1 is satisfied.

Branching numbers: Properties

Dominance For any \(a_i, b_i \) such that \(a_i \geq b_i \) for all \(i, 1 \leq i \leq k \),
\[(a_1, \ldots, a_k) \leq (b_1, \ldots, b_k), \]
as \(2^{-a_1} + \ldots + 2^{-a_k} \leq 2^{-b_1} + \ldots + 2^{-b_k} \).
In particular, for any \(a, b > 0 \),
either \((a, a) \leq (a, b) \) or \((b, b) \leq (a, b) \).

Balance If \(0 < a \leq b \), then for any \(\epsilon \) such that \(0 \leq \epsilon \leq a \),
\[(a, b) \leq (a - \epsilon, b + \epsilon) \]
by convexity of \(2^x \).

Exercises
1. Let \(A \) be a branching algorithm, such that, on any input of size at most \(n \) its search tree has height at most \(n \) and for the number of leaves \(L(n) \), we have
\[L(n) \leq 3 \cdot L(n - 2) \]
Upper bound the running time of \(A \), assuming it spends only polynomial time at each node of the search tree.
2. Same question, except that
\[L(n) \leq \max \begin{cases} 2 \cdot L(n - 3) \\ L(n - 2) + L(n - 4) \\ 2 \cdot L(n - 2) \\ L(n - 1) \end{cases} \]

2.3 Measure Based Analysis
- **Goal, idea**
 - capture more structural changes when branching into subinstances
- **Means**
 - potential-function method, a.k.a., Measure & Conquer
- **Example: Algorithm mis**
 - advantage when degrees of vertices decrease
Multivariate recurrences

- Model running time of \textit{mis} by

\[T(n_1, n_2, \ldots), \text{ short } T\left(\{n_i\}_{i \geq 1}\right), \]

where \(n_i := |\{v \in V : d(v) = i\}|. \)

- \(G - v \): neighbors’ degrees decrease

- \(G - N[v] \): a vertex in \(N^2[v] \) has its degree decreased

Multivariate recurrences (2)

- We obtain the following recurrence where the maximum ranges over all \(d \geq 3, \) all \(p_i, 2 \leq i \leq d \) such that \(\sum_{i=2}^{d} p_i = d \) and all \(k \) such that \(2 \leq k \leq d \):

\[
T\left(\{n_i\}_{i \geq 1}\right) = \max_{d,p_2,\ldots,p_d,k} \left\{ T\left(\{n_i - p_i + p_{i+1} - [d = i]\}_{i \geq 1}\right) + T\left(\{n_i - p_i - [d = i] - [k = i]\}_{i \geq 1} + [k = i + 1]\right) \right\}
\]

(6)

where the Iverson bracket \([F] = \begin{cases} 1 & \text{if } F \text{ true} \\ 0 & \text{otherwise} \end{cases} \)

Solve multivariate recurrence

- restrict to max degree 5

- [Eppstein 2004]: there exists a set of weights \(w_1, \ldots, w_5 \in \mathbb{R}^+ \) such that a solution to (6) is within a polynomial factor of a solution to the corresponding univariate weighted model \(T\left(\sum_{i=1}^{5} \omega_i n_i\right) = \max \ldots \).

Definition 5. A measure \(\mu \) for a problem \(P \) is a function from the set of all instances for \(P \) to the set of non-negative reals

From recurrences ...

\[
\mu(G) := \sum_{i=1}^{5} w_i n_i
\]

\[
(i \geq 1) \quad w_i \geq 0
\]

\[
(i \geq 2) \quad w_i \geq w_{i-1}
\]

\[
(\forall d : 2 \leq d \leq 5) \quad h_d := \min_{2 \leq i \leq d} \{w_i - w_{i-1}\}
\]

By [Eppstein 2004], there exist weights \(w_i \) such that a solution to (6) corresponds to a solution to the following recurrence, where the maximum ranges over all \(d, 3 \leq d \leq 5, \) and all \(p_i, 2 \leq i \leq d, \) such that \(\sum_{i=2}^{d} p_i = d, \)

\[
T(\mu(G)) = \max_{d,p_2,\ldots,p_d,k} \left\{ T\left(\mu(G) - w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})\right) + T\left(\mu(G) - w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d\right) \right\}
\]

... to constraints

\[
T(\mu(G)) \geq T\left(\mu(G) - w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})\right) + T\left(\mu(G) - w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d\right)
\]

for all \(d, 3 \leq d \leq 5, \) and all \(p_i, 2 \leq i \leq d, \) such that \(\sum_{i=2}^{d} p_i = d. \)
Measure Based Analysis

Lemma 6 (Measure Analysis Lemma). Let

• A be a branching algorithm
• \(c \geq 0 \) be a constant, and
• \(\mu(\cdot), \eta(\cdot) \) be two measures for the instances of A,

such that on input \(I \), A calls itself recursively on instances \(I_1, \ldots, I_k \), but, besides the recursive calls, uses time \(O(|I|^c) \), such that

\[
(\forall i) \quad \eta(I_i) \leq \eta(I) - 1, \text{ and } \\
2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \leq 2^{\mu(I)}. \tag{7}
\]

Then A solves any instance \(I \) in time \(O(\eta(I)^{c+1}) \cdot 2^{\mu(I)} \).

Applying the lemma

\[
w_i \geq 0 \\
w_i \geq w_{i-1} \\
2^{\mu(G)} \geq 2^{\mu(G) - w_d - \sum_{i=2}^{d} p_i (w_i - w_{i-1})} + 2^{\mu(G) - w_d - \sum_{i=2}^{d} p_i w_i - h_d} \iff \\
1 \geq 2^{-w_d - \sum_{i=2}^{d} p_i (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^{d} p_i w_i - h_d}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(w_i)</th>
<th>(h_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.38</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.40</td>
<td>0.02</td>
</tr>
</tbody>
</table>

These values for \(w_i \) satisfy all the constraints and \(\mu(G) \leq 2n/5 \) for any graph of max degree \(\leq 5 \). Taking \(c = 2 \) and \(\eta(G) = n \), the Measure Analysis Lemma shows that mis has run time \(O(n^3)2^{2n/5} = O(1.3196^n) \) on graphs of max degree \(\leq 5 \).

2.4 Optimizing the measure

Compute optimal weights

• By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for \(h_d \)

\[
(\forall d : 2 \leq d \leq 5) \quad h_d := \min_{2 \leq i \leq d} \{w_i - w_{i-1}\} \\
\downarrow \\
(\forall i, d : 2 \leq i \leq d \leq 5) \quad h_d \leq w_i - w_{i-1}.
\]

Use existing convex programming solvers to find optimum weights.
convex program in AMPL

param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg \le i
var Wmax; # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
 Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
 g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
 h[d] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 : p2+p3+p4+p5=5}:

Optimal weights

<table>
<thead>
<tr>
<th>i</th>
<th>w_i</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.206018</td>
<td>0.206018</td>
</tr>
<tr>
<td>3</td>
<td>0.324109</td>
<td>0.118091</td>
</tr>
<tr>
<td>4</td>
<td>0.356007</td>
<td>0.031898</td>
</tr>
<tr>
<td>5</td>
<td>0.358044</td>
<td>0.002037</td>
</tr>
</tbody>
</table>

• use the Measure Analysis Lemma with \(\mu(G) = \sum_{i=1}^{5} w_i n_i \le 0.358044 \cdot n, c = 2, \) and \(\eta(G) = n \)
• mis has running time \(O(n^3)2^{0.358044-n} = O(1.2817^n) \)

2.5 Exponential Time Subroutines

Lemma 7 (Combine Analysis Lemma).

Let

- \(A \) be a branching algorithm and \(B \) be an algorithm,

- \(c \geq 0 \) be a constant, and

- \(\mu(\cdot), \mu'(\cdot), \eta(\cdot) \) be three measures for the instances of \(A \) and \(B \),

such that \(\mu'(I) \leq \mu(I) \) for all instances \(I \), and on input \(I \), \(A \) either solves \(I \) by invoking \(B \) with running time \(O(\eta(I)^{c+1}) \cdot 2^\mu(I) \), or calls itself recursively on instances \(I_1, \ldots, I_k \), but, besides the recursive calls, uses time \(O(|I|^c) \), such that

\[
\begin{align*}
(\forall i) \quad \eta(I_i) & \leq \eta(I) - 1, \text{ and} \\
2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} & \leq 2^{\mu(I)}.
\end{align*}
\]

Then \(A \) solves any instance \(I \) in time \(O(\eta(I)^{c+1}) \cdot 2^\mu(I) \).

Algorithm mis on general graphs

- use the Combine Analysis Lemma with \(A = B = \text{mis} \), \(c = 2, \mu(G) = 0.35805n, \mu'(G) = \sum_{i=1}^{5} w_i n_i, \) and \(\eta(G) = n \)

- for every instance \(G, \mu'(G) \leq \mu(G) \) because \(\forall i, w_i \leq 0.35805 \)

- for each \(d \geq 6, \)

\[
(0.35805, (d + 1) \cdot 0.35805) \leq 1
\]

- Thus, Algorithm mis has running time \(O(1.2817^n) \) for graphs of arbitrary degrees
2.6 Structures that arise rarely

Rare Configurations

- Branching on a local configuration C does not influence overall running time if C is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm.
- Can be proved formally by using measure

$$
\mu'(I) := \begin{cases}
\mu(I) + c & \text{if } C \text{ may be selected in the current subtree} \\
\mu(I) & \text{otherwise.}
\end{cases}
$$

Avoid branching on regular instances in mis

else

Select $v \in V$ such that

1. v has maximum degree, and
2. among all vertices satisfying (1), v has a neighbor of minimum degree

return $\max (1 + \text{mis}(G - N[v]), \text{mis}(G - v))$

New measure:

$$
\mu'(G) = \mu(G) + \sum_{d=3}^{5} G \text{ has a } d\text{-regular subgraph} \cdot C_d
$$

where $C_d, 3 \leq d \leq 5$, are constants.

Resulting Branching numbers

For each $d, 3 \leq d \leq 5$ and all $p_i, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_i = d$ and $p_d \neq d$,

$$(w_d + \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^{d} p_i \cdot w_i + h_d).$$

All these branching numbers are at most 1 with the optimal set of weights.

Result

<table>
<thead>
<tr>
<th>i</th>
<th>w_i</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.207137</td>
<td>0.207137</td>
</tr>
<tr>
<td>3</td>
<td>0.322203</td>
<td>0.115066</td>
</tr>
<tr>
<td>4</td>
<td>0.343587</td>
<td>0.021384</td>
</tr>
<tr>
<td>5</td>
<td>0.347974</td>
<td>0.004387</td>
</tr>
</tbody>
</table>

Thus, the modified Algorithm mis has running time $O(2^{0.3480 \cdot n}) = O(1.2728^n)$.

2.7 State Based Measures

State based measures

- “bad” branching always followed by “good” branchings
- amortize over branching numbers
\[
\mu'(I) := \mu(I) + \Psi(I),
\]
where \(\Psi : \mathcal{I} \rightarrow \mathbb{R}^+\) depends on global properties of the instance.

3 Exercise on Max 2-CSP

Max 2-CSP

Input: A graph \(G = (V, E)\) and a set \(S\) of score functions containing

- a score function \(s_e : \{0, 1\}^2 \rightarrow \mathbb{N}_0\) for each edge \(e \in E\),
- a score function \(s_v : \{0, 1\} \rightarrow \mathbb{N}_0\) for each vertex \(v \in V\), and
- a score “function” \(s_\emptyset : \{0, 1\}^0 \rightarrow \mathbb{N}_0\) (which takes no arguments and is just a constant convenient for bookkeeping).

Output: The maximum score \(s(\phi)\) of an assignment \(\phi : V \rightarrow \{0, 1\}:\)

\[
s(\phi) := s_\emptyset + \sum_{v \in V} s_v(\phi(v)) + \sum_{uv \in E} s_{uv}(\phi(u), \phi(v)).
\]

1. Design simplification rules for vertices of degree \(\leq 2\).
2. Using the simple analysis, design and analyze an \(O^*(2^{m/4})\) time algorithm, where \(m = |E|\).
3. Use the measure \(\mu := w_e \cdot m - (\sum_{v \in V} w_{d_G(v)})\) to improve the analysis to \(O^*(2^{m/5})\).

Solution sketch

Simplification rules

S0 If there is a vertex \(y\) with \(d(y) = 0\), then set \(s_\emptyset = s_\emptyset + \max_{C \in \{0, 1\}} s_y(C)\) and delete \(y\) from \(G\).

S1 If there is a vertex \(y\) with \(d(y) = 1\), then denote \(N(y) = \{x\}\) and replace the instance with \((G', S')\) where \(G' = (V', E') = G - y\) and \(S'\) is the restriction of \(S\) to \(V'\) and \(E'\) except that for all \(C \in \{0, 1\}\) we set

\[
s'_x(C) = s_x(C) + \max_{D \in \{0, 1\}} \{s_{xy}(C, D) + s_y(D)\}.
\]

S2 If there is a vertex \(y\) with \(d(y) = 2\), then denote \(N(y) = \{x, z\}\) and replace the instance with \((G', S')\) where \(G' = (V', E') = (V - y, (E \setminus \{xy, yz\}) \cup \{xz\})\) and \(S'\) is the restriction of \(S\) to \(V'\) and \(E'\), except that for \(C, D \in \{0, 1\}\) we set

\[
s'_{xz}(C, D) = s_{xz}(C, D) + \max_{F \in \{0, 1\}} \{s_{xy}(C, F) + s_{yz}(F, D) + s_y(F)\}
\]

if there was already an edge \(xz\), discarding the first term \(s_{xz}(C, D)\) if there was not.

Branching rules
B Let y be a vertex of maximum degree. There is one subinstance (G', s^C) for each color $C \in \{0, 1\}$, where $G' = (V', E') = G - y$ and s^C is the restriction of s to V' and E', except that we set

$$(s^C)_y = s_y + s_y(C),$$

and, for every neighbor x of y and every $D \in \{0, 1\}$,

$$(s^C)_x(D) = s_x(D) + s_{xy}(D, C).$$

- Branching on a vertex of degree ≥ 4 removes ≥ 4 edges from both subinstances
- Branching on a vertex of degree 3 removes ≥ 6 edges from both subinstances since G is 3-regular.

The recurrence $T(m) \leq 2 \cdot T(m - 4)$ solves to $2^{m/4}$

Using the measure

$$\mu := w_e \cdot m + \left(\sum_{v \in V} w_d g(v) \right)$$

we constrain that

$$w_d \leq 0$$

for all $d \geq 0$ to ensure that $\mu \leq w_e m$

$$d \cdot w_e / 2 + w_d \geq 0$$

for all $d \geq 0$ to ensure that $\mu(G) \geq 0$

$$-w_0 \leq 0$$

constraint for S_0

$$-w_2 - w_e \leq 0$$

constraint for S_2

$$1 - w_d - d \cdot w_e - d \cdot (w_j - w_{j-1}) \leq 0$$

for all $d, j \geq 3$.

Using $w_e = 0.2$, $w_0 = 0$, $w_1 = -0.05$, $w_2 = -0.2$, $w_3 = -0.05$, and $w_d = 0$ for $d \geq 4$, all constraints are satisfied and $\mu(G) \leq m/5$ for each graph G.

4 Further Reading