
COMP4418: Knowledge
Representation and Reasoning

First-Order Logic

Maurice Pagnucco
School of Computer Science and Engineering

University of New South Wales

NSW 2052, AUSTRALIA
morri@cse.unsw.edu.au

COMP4418 c©UNSW, 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 1

First-Order Logic

� First-order logic furnishes us with a much more expressive knowledge

representation language than propositional logic

� We can directly talk about objects, their properties, relations between

them, etc. . . .

� Here we discuss first-order logic and resolution

� However, there is a price to pay for this expressiveness in terms of

decidability

� References:

◮ Ivan Bratko, Prolog Programming for Artificial Intelligence,

Addison-Wesley, 2001. (Chapter 15)

◮ Stuart J. Russell and Peter Norvig, Artificial Intelligence: A

Modern Approach, Prentice-Hall International, 1995. (Chapter 6)

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 2

Overview

� Syntax of First-Order Logic

� Semantics of First-Order Logic

� Conjunctive Normal Form

� Unification

� First-Order Resolution

� Soundness and Completeness

� Decidability

� Conclusion

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 3

Syntax of First-Order Logic

� Constant Symbols: a, b, . . . , Mary (objects)

� Variables: x, y, . . .

� Function Symbols: f , mother o f , sine, . . .

� Predicate Symbols: Mother, likes, . . .

� Quantifiers: ∀ (universal); ∃ (existential)

Terms: constant, variable, functions applied to terms (refer to

objects)

� Atomic Sentences: predicate applied to terms (state facts)

� Ground (closed) term: a term with no variable symbols

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 4

Syntax of First-Order Logic

Sentence ::= AtomicSentence ‖ Sentence Connective Sentence

‖ Quantifier Variable Sentence ‖ ¬ Sentence ‖ (Sentence)

AtomicSentence ::= Predicate (Term∗)

Term ::= Function (Term∗) ‖ Constant ‖ Variable

Connective ::= → ‖ ∧ ‖ ∨ ‖ ↔

Quantifier ::= ∀ ‖ ∃

Constant ::= a ‖ John ‖ . . .

Variable ::= x ‖ men ‖ . . .

Predicate ::= P ‖ Red ‖ Between ‖ . . .

Function ::= f ‖ Father ‖ . . .

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 5

Converting English into First-Order Logic

� Everyone likes lying on the beach — ∀x Beach(x)

� Someone likes Fido — ∃x Likes(x, Fido)

� No one likes Fido — ¬∃x Likes(x, Fido)

� Fido doesn’t like everyone — ¬∀x Likes(Fido, x)

� All cats are mammals — ∀x (Cat(x)→ Mammal(x))

� Some mammals are carnivorous — ∃x (Mammal(x)∧Carnivorous(x))

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 6

Nested Quantifiers

Note that the order of quantification is very important

� Everything likes everything — ∀x ∀y Likes(x, y)

� Something likes something — ∃x ∃y Likes(x, y)

� Everything likes something — ∀x ∃y Likes(x, y)

� There is something liked by everything — ∃y ∀x Likes(x, y)

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 7

Scope of Quantifiers

� The scope of a quantifier in a formula φ is that subformula ψ of φ of

which that quantifier is the main logical operator

� Variables belong to the innermost quantifier that mentions them

� Examples:

◮ Q(x)→∀y P(x, y) — scope of ∀y is P(x, y)

◮ ∀z P(z)→¬Q(z) — scope of ∀z is P(z) but not Q(z)

◮ ∃x(P(x)→∀x P(x))

◮ ∀x(P(x)→ Q(x))→ (∀x P(x)→∀x Q(x))

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 8

Terminology

� Free-variable occurrences in a formula —

◮ All variables in an atomic formula

◮ The free-variable occurrences in ¬φ are those in φ

◮ The free-variable occurrences in φ⊕ψ are those in φ and ψ for

any connective ⊕

◮ The free-variable occurrences in ∀x Φ and ∃x Φ are those in Φ
except for occurrences of x

� Open formula — A formula in which free variables occur

� Closed formula — A formula with no free variables

� Closed formulae are also known as sentences

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 9

Semantics of First-Order Logic

� A world in which a sentence is true under a particular interpretation

is known as a model of that sentence under the interpretation

� Constant symbols an interpretation specifies which object in the

world a constant refers to

Predicate symbols an interpretation specifies which relation in the

model a predicate refers to

Function symbols an interpretation specifies which function in the

model a function symbol refers to

Universal quantifier is true iff all all instances are true

Existential quantifier is true iff one instance is true

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 10

Conversion into Conjunctive Normal Form

1. Eliminate implication

φ → ψ ≡ ¬φ∨ψ

2. Move negation inwards (negation normal form)

¬(φ∧ψ)≡ ¬φ∨¬ψ
¬(φ∨ψ)≡ ¬φ∧¬ψ
¬ ∀x φ ≡ ∃x ¬φ
¬ ∃x φ ≡ ∀x ¬φ

¬¬φ ≡ φ

3. Standardise variables

(∀x P(x))∨ (∃x Q(x))
becomes (∀x P(x))∨ (∃y Q(y))

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 11

Conversion into Conjunctive Normal Form

4. Skolemise

∃x P(x)⇒ P(a)
∀x∃y P(x, y)⇒∀x P(x, f (x))
∀x∀y∃z P(x, y, z)⇒∀x∀y P(x, y, f (x, y))

5. Drop universal quantifiers

6. Distribute ∧ over ∨
(φ∧ψ)∨χ ≡ (φ∨χ)∧ (ψ∨χ)

7. Flatten nested conjunctions and disjunctions

(φ∧ψ)∧χ ≡ φ∧ψ∧χ;(φ∨ψ)∨χ ≡ φ∨ψ∨χ

(8. In proofs, rename variables in separate clauses — standardise apart)

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 12

CNF — Example 1

∀x[(∀y P(x, y))→¬∀y(Q(x, y)→ R(x, y))]

1. ∀x[¬(∀y P(x, y))∨¬∀y(¬Q(x, y)∨R(x, y))]

2. ∀x[(∃y P(x, y))∨∃y(Q(x, y)∧¬R(x, y))]

3. ∀x[(∃y ¬P(x, y))∨∃z(Q(x, z)∧¬R(x, z))]

4. ∀x[¬P(x, f (x))∨ (Q(x, g(x))∧¬R(x, g(x)))]

5. ¬P(x, f (x))∨ (Q(x, g(x))∧¬R(x, g(x)))

6. (¬P(x, f (x))∨Q(x, g(x)))∧ (¬P(x, f (x))∨¬R(x, g(x)))

8. ¬P(x, f (x))∨Q(x, g(x))
¬P(y, f (y))∨¬R(y, g(y))

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 13

CNF — Example 2

¬∃x∀y∀z((P(y)∨Q(z))→ (P(x)∨Q(x)))

¬∃x∀y∀z(¬(P(y)∨Q(z))∨ (P(x)∨Q(x))) [Eliminate →]

∀x¬∀y∀z(¬(P(y)∨Q(z))∨ (P(x)∨Q(x))) [Move ¬ inwards]

∀x∃y¬∀z(¬(P(y)∨Q(z))∨ (P(x)∨Q(x))) [Move ¬ inwards]

∀x∃y∃z¬(¬(P(y)∨Q(z))∨ (P(x)∨Q(x))) [Move ¬ inwards]

∀x∃y∃z(¬¬(P(y)∨Q(z))∧¬(P(x)∨Q(x))) [Move ¬ inwards]

∀x∃y∃z((P(y)∨Q(z))∧ (¬P(x)∧¬Q(x))) [Move ¬ inwards]

∀x((P(f (x))∨Q((g(x)))∧ (¬P(x)∧¬Q(x))) [Skolemise]

(P(f (x))∨Q((g(x)))∧¬P(x)∧¬Q(x) [Drop ∀]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 14

Unification

� Unification takes two atomic formulae and returns a substitution that

makes them look the same

� Example:

{x/a, y/z, w/ f (b, c)}

� Note:
1. Each variable has at most one associated expression
2. No variable with an associated expression occurs within any

associated expression

� {x/g(y), y/ f (x)} is not a substitution

� Substitution σ that makes a set of expressions identical known as a

unifier

� Substitution σ1 is a more general unifier than a substitution σ2 if for

some substitution τ, σ2 = σ1τ.

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 15

First-Order Resolution

� Generalised Resolution Rule:

For clauses χ∨Φ and ¬Ψ∨ζ

χ∨Φ ¬Ψ∨ζ

(χ∨ζ).θ

❧
❧
❧
❧
❧

❧
❧❧

✱
✱

✱
✱

✱
✱

✱✱

� Where θ is a unifier for atomic formulae Φ and Ψ

� χ∨ζ is known as the resolvent

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 16

Resolution — Example 1

⊢ ∃x(P(x)→∀xP(x))
CNF(¬∃x(P(x)→∀xP(x)))

∀x¬(¬P(x)∨∀x P(x)) [Drive ¬ inwards]

∀x(¬¬P(x)∧¬∀x P(x)) [Drive ¬ inwards]

∀x(P(x)∧∃x ¬P(x)) [Drive ¬ inwards]

∀x(P(x)∧∃z ¬P(z)) [Standardise Variables]

∀x(P(x)∧¬P(f (x))) [Skolemise]

P(x)∧¬P(f (x)) [Drop ∀]

1. P(x) [¬ Conclusion]

2. ¬P(f (y)) [¬ Conclusion]

3. P(f (y)) [1. {x/ f (y)}]

4. � [2, 3. Resolution]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 17

Resolution — Example 2

1. P(f (x))∨Q(g(x)) [¬ Conclusion]

2. ¬P(y) [¬ Conclusion]

3. ¬Q(z) [¬ Conclusion]

4. P(f (a))∨Q(g(a)) [1. {x/a}]

5. ¬P(f (a)) [2. {y/ f (a)}]

6. ¬Q(g(a)) [3. {z/g(a)}]

7. Q(g(a)) [4, 5. Resolution]

8. � [6, 7. Resolution]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 18

Resolution — Example 3

1. man(Marcus) [Premise]

2. Pompeian(Marcus) [Premise]

3. ¬Pompeian(x)∨Roman(x) [Premise]

4. ruler(Caesar) [Premise]

5. ¬Roman(y)∨ loyaltyto(y, Caesar)∨hate(y, Caesar) [Premise]

6. loyaltyto(z, f (z)) [Premise]

7. ¬man(w)∨¬ruler(u)∨¬tryassassinate(w, u)∨¬loyaltyto(w, u) [Premise]

8. tryassassinate(Marcus, Caesar) [Premise]

9. ¬hate(Marcus, Caesar) [¬ Conclusion]

10. ¬Roman(Marcus)∨loyaltyto(Marcus, Caesar)∨hate(Marcus, Caesar) [5.

{y/Marcus}]

11. ¬Roman(Marcus)∨ loyaltyto(Marcus, Caesar) [9, 10. Resolution]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 19

Resolution — Example 3

12. ¬Pompeian(Marcus)∨Roman(Marcus) [3. {x/Marcus}]

13. loyaltyto(Marcus, Caesar)∨¬Pompeian(Marcus) [11, 12.

Resolution]

14. loyaltyto(Marcus, Caesar) [2, 13. Resolution]

15. ¬man(Marcus)∨ ¬ruler(Caesar)∨ ¬tryassassinate(Marcus,
Caesar)∨ ¬loyaltyto(Marcus, Caesar) [7. {w/Marcus, u/Caesar}]

16. ¬man(Marcus)∨¬ruler(Caesar)∨¬tryassassinate(Marcus, Caesar) [14,

15. Resolution]

17. ¬ruler(Caesar)∨¬tryassassinate(Marcus, Caesar) [1, 16.

Resolution]

18. ¬tryassassinate(Marcus, Caesar) [4, 17. Resolution]

19. � [8, 18. Resolution]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 20

Soundness and Completeness

� Resolution is

◮ sound (if λ ⊢ ρ, then λ |= ρ)

◮ complete (if λ |= ρ, then λ ⊢ ρ)

Decidability

� First-order logic is not decidable

� How would you prove this?

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 23 September, 2019 First-Order Logic 21

Conclusion

� First-order logic allows us to speak about objects, properties of

objects and relationships between objects

� It also allows quantification over variables

� First-order logic is quite an expressive knowledge representation

language; much more so than propositional logic

� However, we do need to add things like equality if we wish to be able

to do things like counting

� We have also traded expressiveness for decidability

� How much of a problems is this?

� If we add (Peano) axioms for mathematics, then we encounter Gödel’s

famous incompleteness theorem (which is beyond the scope of this

course)

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

