COMP4418: Knowledge Representation and Reasoning

First-Order Logic

Maurice Pagnucco School of Computer Science and Engineering University of New South Wales NSW 2052, AUSTRALIA morri@cse.unsw.edu.au

First-Order Logic

- First-order logic furnishes us with a much more expressive knowledge representation language than propositional logic
- We can directly talk about objects, their properties, relations between them, etc. ...
- Here we discuss first-order logic and resolution
- However, there is a price to pay for this expressiveness in terms of decidability
- References:
 - Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley, 2001. (Chapter 15)
 - Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall International, 1995. (Chapter 6)

Overview

- Syntax of First-Order Logic
- Semantics of First-Order Logic
- Conjunctive Normal Form
- Unification
- First-Order Resolution
- Soundness and Completeness
- Decidability
- Conclusion

Syntax of First-Order Logic

- **Constant Symbols:** *a*, *b*, ..., *Mary* (objects)
- **Variables:** x, y, \ldots
- **Function Symbols:** *f*, *mother_of*, *sine*, ...
- **Predicate Symbols:** *Mother*, *likes*, ...
- **Quantifiers:** \forall (universal); \exists (existential)

Terms: constant, variable, functions applied to terms (refer to objects)

- Atomic Sentences: predicate applied to terms (state facts)
- **Ground (closed) term:** a term with no variable symbols

Syntax of First-Order Logic

```
Sentence ::= AtomicSentence || Sentence Connective Sentence
       \parallel Quantifier Variable Sentence \parallel \neg Sentence \parallel (Sentence)
AtomicSentence ::= Predicate (Term<sup>*</sup>)
Term ::= Function (Term<sup>*</sup>) \parallel Constant \parallel Variable
Connective ::= \rightarrow || \land || \lor || \leftrightarrow
Quantifier ::= \forall \parallel \exists
Constant ::= a || John || ...
Variable ::= x \parallel men \parallel \dots
Predicate ::= P \parallel \mathbf{Red} \parallel \mathbf{Between} \parallel \dots
Function ::= f \parallel Father \parallel \dots
```

Converting English into First-Order Logic

- Everyone likes lying on the beach $\forall x \operatorname{Beach}(x)$
- Someone likes Fido $\exists x \ Likes(x, \ Fido)$
- No one likes Fido $\neg \exists x \, Likes(x, \, Fido)$
- Fido doesn't like everyone $\neg \forall x \ Likes(Fido, x)$
- All cats are mammals $\forall x (Cat(x) \rightarrow Mammal(x))$
- Some mammals are carnivorous $\exists x (Mammal(x) \land Carnivorous(x))$

Nested Quantifiers

Note that the order of quantification is very important

- Everything likes everything $\forall x \forall y Likes(x, y)$
- Something likes something $\exists x \exists y Likes(x, y)$
- Everything likes something $\forall x \exists y Likes(x, y)$
- There is something liked by everything $\exists y \forall x Likes(x, y)$

Scope of Quantifiers

- The scope of a quantifier in a formula ϕ is that subformula ψ of ϕ of which that quantifier is the main logical operator
- Variables belong to the innermost quantifier that mentions them
- Examples:
 - ► $Q(x) \rightarrow \forall y P(x, y)$ scope of $\forall y$ is P(x, y)
 - ► $\forall z P(z) \rightarrow \neg Q(z)$ scope of $\forall z$ is P(z) but not Q(z)
 - $\blacktriangleright \exists x (P(x) \to \forall x P(x))$
 - $\blacktriangleright \quad \forall x (P(x) \to Q(x)) \to (\forall x \ P(x) \to \forall x \ Q(x))$

Terminology

■ Free-variable occurrences in a formula —

- ► All variables in an atomic formula
- ► The free-variable occurrences in $\neg \phi$ are those in ϕ
- ► The free-variable occurrences in $\phi \oplus \psi$ are those in ϕ and ψ for any connective \oplus
- ► The free-variable occurrences in $\forall x \Phi$ and $\exists x \Phi$ are those in Φ except for occurrences of *x*
- Open formula A formula in which free variables occur
- Closed formula A formula with no free variables
- Closed formulae are also known as sentences

Semantics of First-Order Logic

- A world in which a sentence is true under a particular interpretation is known as a model of that sentence under the interpretation
- **Constant symbols** an interpretation specifies which object in the world a constant refers to
 - **Predicate symbols** an interpretation specifies which relation in the model a predicate refers to
 - **Function symbols** an interpretation specifies which function in the model a function symbol refers to
 - Universal quantifier is true iff all all instances are true
 - Existential quantifier is true iff one instance is true

Conversion into Conjunctive Normal Form

1. Eliminate implication

$$\phi \mathop{\rightarrow} \psi \equiv \neg \phi \mathop{\vee} \psi$$

2. Move negation inwards (negation normal form)

$$\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$
$$\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$$
$$\neg \forall x \phi \equiv \exists x \neg \phi$$
$$\neg \exists x \phi \equiv \forall x \neg \phi$$
$$\neg \neg \phi \equiv \phi$$

3. Standardise variables

 $(\forall x P(x)) \lor (\exists x Q(x))$ becomes $(\forall x P(x)) \lor (\exists y Q(y))$

Conversion into Conjunctive Normal Form

4. Skolemise

$$\exists x \ P(x) \Rightarrow P(a) \forall x \exists y \ P(x, y) \Rightarrow \forall x \ P(x, f(x)) \forall x \forall y \exists z \ P(x, y, z) \Rightarrow \forall x \forall y \ P(x, y, f(x, y))$$

- 5. Drop universal quantifiers
- 6. Distribute \land over \lor

$$(\phi \wedge \psi) \lor \chi \equiv (\phi \lor \chi) \wedge (\psi \lor \chi)$$

- 7. Flatten nested conjunctions and disjunctions $(\phi \land \psi) \land \chi \equiv \phi \land \psi \land \chi; (\phi \lor \psi) \lor \chi \equiv \phi \lor \psi \lor \chi$
- (8. In proofs, rename variables in separate clauses standardise apart)

CNF — Example 1

$$\forall x [(\forall y P(x, y)) \rightarrow \neg \forall y (Q(x, y) \rightarrow R(x, y))]$$

$$1. \forall x [\neg (\forall y P(x, y)) \lor \neg \forall y (\neg Q(x, y) \lor R(x, y))]$$

$$2. \forall x [(\exists y P(x, y)) \lor \exists y (Q(x, y) \land \neg R(x, y))]$$

$$3. \forall x [(\exists y \neg P(x, y)) \lor \exists z (Q(x, z) \land \neg R(x, z))]$$

$$4. \forall x [\neg P(x, f(x)) \lor (Q(x, g(x)) \land \neg R(x, g(x)))]$$

$$5. \neg P(x, f(x)) \lor (Q(x, g(x)) \land \neg R(x, g(x)))$$

$$6. (\neg P(x, f(x)) \lor Q(x, g(x))) \land (\neg P(x, f(x)) \lor \neg R(x, g(x)))$$

$$8. \neg P(x, f(x)) \lor Q(x, g(x))$$

$$\neg P(y, f(y)) \lor \neg R(y, g(y))$$

CNF — Example 2

 $\neg \exists x \forall y \forall z ((P(y) \lor Q(z)) \to (P(x) \lor Q(x)))$ $\neg \exists x \forall y \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x))) \text{ [Eliminate } \rightarrow \text{]}$ $\forall x \neg \forall y \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Move \neg inwards] $\forall x \exists y \neg \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Move \neg inwards] $\forall x \exists y \exists z \neg (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Move \neg inwards] $\forall x \exists y \exists z (\neg \neg (P(y) \lor Q(z)) \land \neg (P(x) \lor Q(x)))$ [Move \neg inwards] $\forall x \exists y \exists z ((P(y) \lor Q(z)) \land (\neg P(x) \land \neg Q(x))) \text{ [Move } \neg \text{ inwards]}$ $\forall x ((P(f(x)) \lor Q((g(x))) \land (\neg P(x) \land \neg Q(x)))$ [Skolemise] $(P(f(x)) \lor Q((g(x))) \land \neg P(x) \land \neg Q(x) [Drop \forall])$

Unification

- Unification takes two atomic formulae and returns a substitution that makes them look the same
- Example:

$$\{x/a, y/z, w/f(b, c)\}$$

- Note:
 - 1. Each variable has at most one associated expression
 - 2. No variable with an associated expression occurs within any associated expression
- $\{x/g(y), y/f(x)\}$ is not a substitution
- Substitution σ that makes a set of expressions identical known as a unifier
- Substitution σ_1 is a more general unifier than a substitution σ_2 if for some substitution τ , $\sigma_2 = \sigma_1 \tau$.

First-Order Resolution

- Generalised Resolution Rule:
 - For clauses $\chi \lor \Phi$ and $\neg \Psi \lor \zeta$

 $\blacksquare \ \chi \lor \zeta \text{ is known as the resolvent}$

$$\operatorname{CNF}(\neg \exists x (P(x) \to \forall x P(x))) \vdash \exists x (P(x) \to \forall x P(x)))$$

 $\forall x \neg (\neg P(x) \lor \forall x P(x))$ [Drive \neg inwards]

 $\forall x(\neg \neg P(x) \land \neg \forall x P(x)) \text{ [Drive } \neg \text{ inwards]}$

 $\forall x (P(x) \land \exists x \neg P(x)) \text{ [Drive } \neg \text{ inwards]}$

 $\forall x (P(x) \land \exists z \neg P(z))$ [Standardise Variables]

 $\forall x (P(x) \land \neg P(f(x)))$ [Skolemise]

 $\underline{P(x) \land \neg P(f(x)) \text{ [Drop } \forall]}$

1. P(x) [\neg Conclusion]

2. $\neg P(f(y))$ [\neg Conclusion]

3. $P(f(y)) = [1. \{x/f(y)\}]$

4. □ [2, 3. Resolution]

- 1. $P(f(x)) \lor Q(g(x))$ [\neg Conclusion]
- 2. $\neg P(y)$ [\neg Conclusion]
- 3. $\neg Q(z)$ [\neg Conclusion]
- 4. $P(f(a)) \lor Q(g(a))$ [1. {x/a}]
- 5. $\neg P(f(a)) = [2. \{y/f(a)\}]$
- 6. $\neg Q(g(a))$ [3. {z/g(a)}]
- 7. Q(g(a)) [4, 5. Resolution]
- 8. \Box [6, 7. Resolution]

- 1. man(Marcus) [Premise]
- 2. *Pompeian*(*Marcus*) [Premise]
- 3. \neg *Pompeian*(*x*) \lor *Roman*(*x*) [Premise]
- 4. *ruler*(*Caesar*) [Premise]
- 5. $\neg Roman(y) \lor loyaltyto(y, Caesar) \lor hate(y, Caesar)$ [Premise]
- 6. loyaltyto(z, f(z)) [Premise]
- 7. $\neg man(w) \lor \neg ruler(u) \lor \neg tryassassinate(w, u) \lor \neg loyaltyto(w, u)$ [Premise]
- 8. tryassassinate(Marcus, Caesar) [Premise]
- 9. \neg hate(Marcus, Caesar) [\neg Conclusion]
- 10. $\neg Roman(Marcus) \lor loyaltyto(Marcus, Caesar) \lor hate(Marcus, Caesar)$ [5. $\{y/Marcus\}$]
- 11. $\neg Roman(Marcus) \lor loyaltyto(Marcus, Caesar)$ [9, 10. Resolution]

12. \neg *Pompeian*(*Marcus*) \lor *Roman*(*Marcus*) [3. {*x*/*Marcus*}]

13. $loyaltyto(Marcus, Caesar) \lor \neg Pompeian(Marcus)$ [11, 12. Resolution]

14. *loyaltyto*(*Marcus*, *Caesar*) [2, 13. Resolution]

15. $\neg man(Marcus) \lor \neg ruler(Caesar) \lor \neg tryassassinate(Marcus,$

Caesar) $\lor \neg loyaltyto(Marcus, Caesar)$ [7. {w/Marcus, u/Caesar}]

16. $\neg man(Marcus) \lor \neg ruler(Caesar) \lor \neg tryassassinate(Marcus, Caesar)$ [14, 15. Resolution]

17. $\neg ruler(Caesar) \lor \neg tryassassinate(Marcus, Caesar)$ [1, 16. Resolution]

18. ¬*tryassassinate*(*Marcus*, *Caesar*) [4, 17. Resolution]

19. [8, 18. Resolution]

COMP4418

Soundness and Completeness

■ Resolution is

- ► sound (if $\lambda \vdash \rho$, then $\lambda \models \rho$)
- complete (if $\lambda \models \rho$, then $\lambda \vdash \rho$)

Decidability

- First-order logic is not decidable
- How would you prove this?

Conclusion

- First-order logic allows us to speak about objects, properties of objects and relationships between objects
- It also allows quantification over variables
- First-order logic is quite an expressive knowledge representation language; much more so than propositional logic
- However, we do need to add things like equality if we wish to be able to do things like counting
- We have also traded expressiveness for decidability
- How much of a problems is this?
- If we add (Peano) axioms for mathematics, then we encounter Gödel's famous incompleteness theorem (which is beyond the scope of this course)