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1 Introduction

In 1956, Bruner, Goodnow and Austin published their book A Study of
Thinking, which became a landmark in psychology and would later have a
major impact on machine learning. The experiments reported by Bruner,
Goodnow and Austin were directed towards understanding a human’s ability
to categorise and how categories are learned.

We begin with what seems a paradox. The world of experience of any
normal man is composed of a tremendous array of discriminably
different objects, events, people, impressions...But were we to utilize
fully our capacity for registering the differences in things and to respond
to each event encountered as unique, we would soon be overwhelmed by
the complexity of our environment... The resolution of this seeming
paradox ... is achieved by man'’s capacity to categorize. To categorise is
to render discriminably different things equivalent, to group objects and
events and people around us into classes... The process of categorizing
involves ... an act of invention... If we have learned the class “house” as
a concept, new exemplars can be readily recognised. The category
becomes a tool for further use. The learning and utilization of categories
represents one of the most elementary and general forms of cognition by
which man adjusts to his environment.

The first question that they had to deal with was that of representation: what
is a concept? They assumed that objects and events could be described by a
set of attributes and were concerned with how inferences could be drawn
from attributes to class membership. Categories were considered to be of
three types: conjunctive, disjunctive and relational.

...when one learns to categorise a subset of events in a certain way, one is
doing more than simply learning to recognise instances encountered. One
is also learning a rule that may be applied to new instances. The concept
or category is basically, this “rule of grouping” and it is such rules that
one constructs in forming and attaining concepts.

The notion of a rule as an abstract representation of a concept in the human
mind came to be questioned by psychologists and there is still no good
theory to explain how we store concepts. However, the same questions
about the nature of representation arise in machine learning, for the choice of
representation heavily determines the nature of a learning algorithm. Thus,
one critical point of comparison among machine learning algorithms is the
method of knowledge representation employed.



In this chapter we will discuss various methods of representation and
compare them according to their power to express complex concepts and the
effects of representation on the time and space costs of learning.

2 Learning, Measurement and Representation

A learning program is one that is capable of improving its performance
through experience. Given a program, P, and some input, x, a normal
program would yield the same result P(x)=y after every application.
However, a learning program can alter its initial state so that its performance
is modified with each application. Thus, we can say P(x|g) = y. That is, y is the
result of applying program P to input, x, given the initial state, 4. The goal of
learning is to construct a new initial, ¢', so that the program alters its
behaviour to give a more accurate or quicker result. Thus, one way of
thinking about what a learning program does is that it builds an increasingly
accurate approximation to a mapping from input to output.

The most common learning task is that of acquiring a function which maps
objects, that share common properties, to the same class value. This is the
categorisation problem to which Bruner, Goodnow and Austin referred and
much of our discussion will be concerned with categorisation.

Learning experience may be in the form of examples from a trainer or the
results of trial and error. In either case, the program must be able to
represent its observations of the world, and it must also be able to represent
hypotheses about the patterns it may find in those observations. Thus, we
will often refer to the observation language and the hypothesisllanguage. The
observation language describes the inputs and outputs of the program and
the hypothesis language describes the internal state of the learning program,
which corresponds to its theory of the concepts or patterns that exist in the
data.

The input to a learning program consists of descriptions of objects from the
universe and, in the case of supervised learning, an output value associated
with the example. The universe can be an abstract one, such as the set of all
natural numbers, or the universe may be a subset of the real-world. No
matter which method of representation we choose, descriptions of objects in
the real world must ultimately rely on measurements of some properties of
those objects. These may be physical properties such as size, weight, colour,
etc or they may be defined for objects, eg. the length of time a person has
been employed for the purpose of approving a loan. The accuracy and
reliability of a learned concept depends heavily on the accuracy and reliability
of the measurements.

A program is limited in the concepts that it can learn by the representational
capabilities of both observation and hypothesis languages. For example, if an
attribute / value list is used to represent examples for an induction program,
the measurement of certain attributes and not others clearly places bounds
on the kinds of patterns that the learner can find. The learner is said to be
biased by its observation language. The hypothesis language also places
constraints on what may and may not be learned. For example, in the



language of attributes and values, relationships between objects are difficult
to represent. Whereas, a more expressive language, such as first order logic,
can easily be used to describe relationships.

Unfortunately, representational power comes at a price. Learning can be
viewed as a search through the space of all sentences in a language for a
sentence that best describes the data. The richer the language, the larger the
search space. When the search space is small, it is possible to use ‘brute force’
search methods. If the search space is very large, additional knowledge is
required to reduce the search.

We will divide our attention among three different classes of machine
learning algorithms that use distinctly different approaches to the problem of
representation:

Instance-based learning algorithms learn concepts by storing prototypic
instances of the concept and do not construct abstract representations at
all

Function approximation algorithms include connectionist and statistics methods.
These algorithms are most closely related to traditional mathematical
notions of approximation and interpolation and represent concepts as
mathematical formulae.

Symbolic learning algorithms learn concepts by constructing a symbolic which
describes a class of objects. We will consider algorithms that work with
representations equivalent to propositional logic and first-order logic.

3 Prototypes

The simplest form of learning is memorisation. When an object is observed
or the solution to a problem is found, it is stored in memory for future use.
Memory can be thought of as a look up table. When a new problem is
encountered, memory is searched to find if the same problem has been
solved before. If an exact match for the search is required, learning is slow
and consumes very large amounts of memory. However, approximate
matching allows a degree of generalisation that both speeds learning and
saves memory.

For example, if we are shown an object and we want to know if it is a chair,
then we compare the description of this new object with descriptions of
‘typical’ chairs that we have encountered before. If the description of the new
object is ‘close” to the description of one of the stored instances then we may
call it a chair. Obviously, we must defined what we mean by ‘typical’ and
‘close’.

To better understand the issues involved in learning prototypes, we will
briefly describe three experiments in Instance-based learning (IBL) by Aha,
Kibler and Albert (1991). IBL learns to classify objects by being shown
examples of objects, described by an attribute/value list, along with the class
to which each example belongs.



Experiment 1

In the first experiment (IB1), to learn a concept simply required the program
to store every example. When an unclassified object was presented for
classification by the program, it used a simple Euclidean distance measure to
determine the nearest neighbour of the object and the class given to it was
the class of the neighbour.

This simple scheme works well, and is tolerant to some noise in the data. Its
major disadvantage is that it requires a large amount of storage capacity.

Experiment 2

The second experiment (IB2) attempted to improve the space performance of
IB1. In this case, when new instances of classes were presented to the
program, the program attempted to classify them. Instances that were
correctly classified were ignored and only incorrectly classified instances were
stored to become part of the concept.

While this scheme reduced storage dramatically, it was less noise-tolerant
than the first.

Experiment 3

The third experiment (IB3) used a more sophisticated method for evaluating
instances to decide if they should be kept or not. IB3 is similar to IB2 with the
following additions. IB3 maintains a record of the number of correct and
incorrect classification attempts for each saved instance. This record
summarised an instance's classification performance. IB3 uses a significance
test to determine which instances are good classifiers and which ones are
believed to be noisy. The latter are discarded from the concept description.
This method strengthens noise tolerance, while keeping storage
requirements down.

Discussion

Figure 1 shows the boundaries of an imaginary concept in a two dimensions
space. The dashed lines represent the boundaries of the target concept. The
learning procedure attempts to approximate these boundaries by nearest
neighbour matches. Note that the boundaries defined by the matching
procedure are quite irregular. This can have its advantages when the target
concept does not have a regular shape.

Learning by remembering typical examples of a concept has several other
advantages. If an efficient indexing mechanism can be devised to find near
matches, this representation can be very fast as a classifier since it reduces to a
table look up. It does not require any sophisticated reasoning system and is
very flexible. As we shall see later, representations that rely on abstractions of
concepts can run into trouble with what appear to be simple concepts. For
example, an abstract representation of a chair may consist of a description of
the number legs, the height, etc. However, exceptions abound since anything
that can be sat on can be thought of as a chair. Thus, abstractions must often
be augmented by lists of exceptions. Instance-based representation does not



Figure 1. The extension of an IBL concept is shown in solid lines.
The dashed lines represent the target concept. A sample of
positive and negative examples is shown. Adapted from Aha,
Kibler and Albert (1991).

suffer from this problem since it only consists exceptions and is designed to
handle them efficiently.

One of the major disadvantages of this style of representation is that it is
necessary to define a similarity metric for objects in the universe. This can
often be difficult to do when the objects are quite complex.

Another disadvantage is that the representation is not human readable. What
does a collection of typical instances tell us about the concept that has been
learned?

4 Function approximation

Statistical and connectionist approaches to machine learning are related to
function approximation methods in mathematics. For the purposes of
illustration let us assume that the learning task is one of classification. That is,
we wish to find ways of grouping objects in a universe. In Figure 2 we have a
universe of objects that belong to either of two classes ‘+" or .

By function approximation, we describe a surface that separates the objects
into different regions. The simplest function is that of a line and linear
regression methods and perceptrons are used to find linear discriminant
functions.

A perceptron is a simple pattern classifier. Given a binary input vector, x, a
weight vector, w, and a threshold value, T, if,
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then the output is 1, indicating membership of a class, otherwise it is 0,
indicating exclusion from the class. Clearly, w-x - T describes a hyperplane



Figure 2: A linear discrimination between two classes

and the goal of perceptron learning is to find a weight vector, w, that results
in correct classification for all training examples. The perceptron learning
algorithm is quite straight forward. All the elements of the weight vector are
initially set to 0. For each training example, if the perceptron outputs 0 when
it should output 1 then add the input vector to the weight vector; if the
perceptron outputs 1 when it should output 0 then subtract the input vector
to the weight vector; otherwise, do nothing. This is repeated until the
perceptron yields the correct result for each training example. The algorithm
has the effect of reducing the error between the actual and desired output.

The perceptron is an example of a linear threshold unit (LTU). A single LTU can
only recognise one kind of pattern, provided that the input space is linearly
separable. If we wish to recognise more than one pattern, several LTU’s can
be combined. In this case, instead of having a vector of weights, we have an
array. The output will now be a vector:

u = Wx
where each element of u indicates membership of a class and each row in W is

the set of weights for one LTU. This architecture is called a pattern associator.

LTU’s can only produce linear discriminant functions and consequently, they
are limited in the kinds of classes that can be learned. However, it was found
that by cascading pattern associators, it is possible to approximate decision
surfaces that are of a higher order than simple hyperplanes. In cascaded
system, the outputs of one pattern associator are fed into the inputs of
another, thus:

u=W(¥x)
This is the scheme that is followed by multi-layer neural nets (Figure 3).

To facilitate learning, a further modification must be made. Rather than using
a simple threshold, as in the perceptron, multi-layer networks usually use a
non-linear threshold such a sigmoid function, such as

1
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X

Like perceptron learning, back-propagation attempts to reduce the errors
between the output of the network and the desired result. However,
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Figure 3. A multi-layer network.

assigning blame for errors to hidden units (ie. nodes in the intermediate
layers), is not so straightforward. The error of the output units must be
propagated back through the hidden units. The contribution that a hidden
unit makes to an output unit is related to the strength of the weight on the
link between the two units and the level of activation of the hidden unit when
the output unit was given the wrong level of activation. This can be used to
estimate the error value for a hidden unit in the penultimate layer, and that
can, in turn, be used in make error estimates for earlier layers.

Despite the non-linear threshold, multi-layer networks can still be thought of
as describing a complex collection of hyperplanes that approximate the
required decision surface.

Discussion

Function approximation methods, such as the ones discussed above, can
often produce quite accurate classifiers because they are capable of
construction complex decision surfaces. However, knowledge is stored as
weights in a matrix. Thus, the results of learning are not easily available for
inspection by a human reader. Moreover, the design of a network usually
requires informed guesswork on the part of the user in order to obtain
satisfactory results. Although some effort has been devoted to extracting
meaning from networks, the still communicate little about the data.

Connectionist learning algorithms are still computationally expensive. A
critical factor in their speed is the encoding of the inputs to the network. This
is also critical to genetic algorithms and we will illustrate that problem in the
next section.

5 Genetic Algorithms

Genetic algorithms (Holland, 1975) perform a search for the solution to a
problem by generating candidate solutions from the space of all solutions and
testing the performance of the candidates. The search method is based on
ideas from genetics and the size of the search space is determined by the
representation of the domain. An understanding of genetic algorithms will be
aided by an example.
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Figure 4. A Pole Balancer

A very common problem in adaptive control is learning to balance a pole that
is hinged on a cart that can move in one dimension along a track of fixed
length, as show in Figure 4. The control must use ‘bang-bang’ control, that is,
a force of fixed magnitude can be applied to push the cart to the left or right.

Before we can begin to learn how to control this system, it is necessary to
represent it somehow. We will use the BOXES method that was devised by
Michie and Chambers (1968). The measurements taken of the physical system
are the angle of the pole, 6, and its angular velocity and the position of the
cart, x, and its velocity. Rather than treat the four variables as continuous
values, Michie and Chambers chose to discretise each dimension of the state
space. One possible discretisation is shown in Figure 5.

This discretisation results in 3x 3 x 6 X 3 = 162 ‘boxes’ that partition the state
space. Each box has associated with it an action setting which tells the
controller that when the system is in that part of the state space, the
controller should apply that action, which is a push to the left or a push to the
right. Since there is a simple binary choice and there are 162 boxes, there are
2162 possible control strategies for the pole balancer.

The simplest kind of learning in this case, is to exhaustively search for the
right combination. However, this is clearly impractical given the size of the
search space. Instead, we can invoke a genetic search strategy that will reduce

0 | i i i i i |

0 | | | |

Figure 5. Discretisation of pole balancer
state space.



the amount of search considerably.

In genetic learning, we assume that there is a population of individuals, each
one of which, represents a candidate problem solver for a given task. Like
evolution, genetic algorithms test each individual from the population and
only the fittest survive to reproduce for the next generation. The algorithm
creates new generations until at least one individual is found that can solve
the problem adequately.

Each problem solver is a chromosome. A position, or set of positions in a
chromosome is called a gene. The possible values (from a fixed set of
symbols) of a gene are known as alleles. In most genetic algorithm
implementations the set of symbols is {0, 1} and chromosome lengths are
fixed. Most implementations also use fixed population sizes.

The most critical problem in applying a genetic algorithm is in finding a
suitable encoding of the examples in the problem domain to a chromosome.
A good choice of representation will make the search easy by limiting the
search space, a poor choice will result in a large search space. For our pole
balancing example, we will use a very simple encoding. A chromosome is a
string of 162 boxes. Each box, or gene, can take values: 0 (meaning push left)
or 1 (meaning push right). Choosing the size of the population can be tricky
since a small population size provides an insufficient sample size over the
space of solutions for a problem and large population requires a lot of
evaluation and will be slow. In this example, 50 is a suitable population size.

Each iteration in a genetic algorithm is called a generation. Each chromosome
in a population is used to solve a problem. Its performance is evaluated and
the chromosome is given some rating of fitness. The population is also given
an overall fitness rating based on the performance of its members. The fitness
value indicates how close a chromosome or population is to the required
solution. For pole balancing, the fitness value of a chromosome may be the
number of time steps that the chromosome is able to keep the pole balanced
for.

New sets of chromosomes are produced from one generation to the next.
Reproduction takes place when selected chromosomes from one generation
are recombined with others to form chromosomes for the next generation.
The new ones are called offspring. Selection of chromosomes for reproduction
is based on their fitness values. The average fitness of population may also be
calculated at end of each generation. For pole balancing, individuals whose
fitness is below average are replaced by reproduction of above average
chromosomes. The strategy must be modified if two few or two many
chromosomes survive. For example, at least 10% and at most 60% must
survive.

Operators that recombine the selected chromosomes are called genetic
operators. Two common operators are crossover and mutation. Crossover
exchanges portions of a pair of chromosomes at a randomly chosen point
called the crossover point. Some Implementations have more than one
crossover point. For example, if there are two chromosomes, X and Y:

X =1001 01011 Y =1110 10010



and the crossover point is 4, the resulting offspring are:
O1 =100110010 02 =1110 01011

Offspring produced by crossover cannot contain information that is not
already in the population, so an additional operator, mutation, is required.
Mutation generates an offspring by randomly changing the values of genes
at one or more gene positions of a selected chromosome. For example, if the
following chromosome,

Z =100101011
is mutated at positions 2, 4 and 9, then the resulting offspring is:
O =110001010

The number of offspring produced for each new generation depends on how
members are introduced so as to maintain a fixed population size. In a pure
replacement strategy, the whole population is replaced by a new one. In an
elitist strategy, a proportion of the population survives to the next
generation.

In pole balancing, all offspring are created by crossover (except when more
the 60% will survive for more than three generations when the rate is
reduced to only 0.75 being produced by crossover). Mutation is a background
operator which helps to sustain exploration. Each offspring produced by
crossover has a probability of 0.01 of being mutated before it enters the
population. If more then 60% will survive, the mutation rate is increased to
0.25.

The number of offspring an individual can produce by crossover is
proportional to its fitness:

fitness value x No. of children

population fitness

where the number of children is the total number of individuals to be
replaced. Mates are chosen at random among the survivors.

The pole balancing experiments described above, were conducted by
Odetayo (1988) and required an average of 8165 trials before balancing pole.
Of course, this may not be the only way of encoding the problem for a
genetic algorithm and so a faster solution may be possible. However, this
requires effort on the part of the user to devise a clever encoding.

6 Propositional Learning Systems

Rather than searching for discriminant functions, symbolic learning systems
find expressions equivalent to sentences in some form of logic. For example,
we may distinguish objects according to two attributes: size and colour. We
may say that an object belongs to class 3 if its colour is red and its size is very
small to medium. Following the notation of Michalski (1983), the classes in
Figure 2 may be written as:

n
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Figure 6: Discrimination on attributes and values

classl < size = large A colour E{red ,orange}
class2 < size E{small, medium} A colour E{omnge, yellow}
class3 < size E{v_ small... medium} A colour = blue

Note that this kind of description partitions the universe into blocks, unlike
the function approximation methods that find smooth surfaces to
discriminate classes.

Interestingly, one of the popular early machine learning algorithms, Aq
(Michalski, 1973), had its origins in switching theory. One of the concerns of
switching theory is to find ways of minimising logic circuits, that is,
simplifying the truth table description of the function of a circuit to a simple
expression in Boolean logic. Many of the algorithms in switching theory take
tables like Figure 6 and search for the best way of covering all of the entries
in the table.

Aq, uses a covering algorithm, to build its concept description:
cover := {}
repeat
select one positive example, e
construct the set of all conjunctive expressions that
cover e and no negative example in E-
choose the ‘best’ expression, x, from this set
add x as a new disjunctof the concept
remove all positive examples covered by x
until there are no positive examples left

The ‘best’ expression is usually some compromise between the desire to
cover as many positive examples as possible and the desire to have as
compact and readable a representation as possible. In designing Aq, Michalski
was particularly concerned with the expressiveness of the concept description
language.

A drawback of the Aq learning algorithm is that it does not use statistical
information, present in the training sample, to guide induction. However,
decision tree learning algorithms (Quinlan, 1979; 1993) do. The basic method
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* The algorithm operates over a set of training

instances, C.
e If all instances in C are in class P, create a

node P and stop. Otherwise select a feature,
F and create a decision node.

. e Partition the trannie in C into subsets
according to the values v; of F.

\Y \Y e Apply the algorithm recursively to each if
the subsets of C.

Figure 5. Decision tree learning

of building a decision tree is summarised in Figure 5. An simple
attribute/value representation is used and so, like Aq, decision trees are
incapable of representing relational information. They are, however, very
quick and easy to build.

Decision tree learning algorithms can be seen as methods for partitioning the
universe into successively smaller rectangles with the goal that each rectangle
only contains objects of one class. This is illustrated in Figure 6.

Discussion

Michalski has always argued in favour of rule-based representations over
tree structured representations, on the grounds of readability. When the
domain is complex, decision trees can become very ‘bushy’ and difficult to
understand, whereas rules tend to be modular and can be read in isolation of
the rest of the knowledge-base constructed by induction. On the other hand,
decision trees induction programs are usually very fast. A compromise is to
use decision tree induction to build an initial tree and then derive rules from

s

Figure 6. The dashed line shows the real division of objects in the
universe. The solid lines show a decision tree approximation.
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the tree thus transforming an efficient but opaque representation into a
transparent one (Quinlan, 1987).

It is instructive to compare the shapes that are produced by various learning
systems when they partition the universe. Figure 6 demonstrates one
weakness of decision tree and other symbolic classification. Since they
approximate partitions with rectangles (if the universe is 2-dimensional) there
is an inherent inaccuracy when dealing with domains with continuous
attributes. Function approximation methods and IBL may be able to attain
higher accuracy, but at the expense of transparency of the resulting theory. It
is more difficult to make general comments about genetic algorithms since
the encoding method will affect both accuracy and readability.

As we have seen, useful insights into induction can be gained by visualising it
as searching for a cover of objects in the universe. Unfortunately, there are
limits to this geometric interpretation of learning. If we wish to learn concepts
that describe complex objects and relationships between the objects, it
becomes very difficult to visualise the universe. For this reason, it is often
useful to rely on reasoning about the concept description language.

As we saw, the cover in Figure 4 can be expressed as clauses in propositional
logic. We can establish a correspondence between sentences in the concept
description language (the hypothesis language) and a diagrammatic
representation of the concept. More importantly, we can create a
correspondence between generalisation and specialisation operations on the
sets of objects and generalisation and specialisation operations on the
sentences of the language.

For example, Figure 7 shows two sets, labelled class 1 and class 2. It is clear
that class 1 is a generalisation of class 2 since it includes a larger number of
objects in the universe. We also call class 2 a specialisation of class 1. By
convention, we say the description of class 1 is a generalisation of the
description of class 2. Thus,

classl <= size = large 1)

is a generalisation of

class2 < size = large A colour = red )

Classs

Classl

Figure 7: Generalisation as set covering

1



Once we have established the correspondence between sets of objects and
their descriptions, it is often convenient to forget about the objects and only
consider that we are working with expressions in a language. The reason is
simple. Beyond a certain point of complexity, it is not possible to visualise
sets, but it is relatively easy to apply simple transformations on sentences in a
formal language. For example, clause (2) can be generalised very easily to
clause (1) by dropping one of the conditions.

In the next section we will look at learning algorithms that deal with
relational information. In this case, the emphasis on language is essential since
geometric interpretations no longer provide us with any real insight into the
operation of these algorithms.

7 Relations and Background Knowledge

Inductions systems, as we have seen so far, might be described as ‘what you
see is what you get’. That is, the output class descriptions use the same
vocabulary as the input examples. However, we will see in this section, that it
is often useful to incorporate background knowledge into learning.

We use a simple example from Banerji (1980) to the use of background
knowledge. There is a language for describing instances of a concept and
another for describing concepts. Suppose we wish to represent the binary
number, 10, by a left-recursive binary tree of digits ‘0" and “1":

[head: [head: 1; tail: nil]; tail: 0]

‘head’ and ‘tail’ are the names of attributes. Their values follow the colon. The
concepts of binary digit and binary number are defined as:

xEdigit=x=0 x=1

x Enum = (tail (x) Edigit A head(x) = nil)
(tail(x) Edigit A head(x) Enum)

Thus, an object belongs to a particular class or concept if it satisfies the logical
expression in the body of the description. Predicates in the expression may
test the membership of an object in a previously learned concept.

Banerji always emphasised the importance of a description language that
could ‘grow’. That is, its descriptive power should increase as new concepts
are learned. This can clearly be seen in the example above. Having learned to
describe binary digits, the concept of digit becomes available for use in the
description of more complex concepts such as binary number.

Extensibility is a natural and easily implemented feature of horn-clause logic.
In addition, a description in horn-clause logic is a logic program and can be
executed. For example, to recognise an object, a horn clause can be
interpreted in a forward chaining manner. Suppose we have a set of clauses:

C, < P, AP, 3)
CZePZIAPZZACl (4)

and an instance:
P ,AP,AP, AP,, (5)
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Clause (3) recognises the first two terms in expression (5) reducing it to
P, AP, AC,

Clause (4) reduces this to C2. That is, clauses (3) and (4) recognise expression
(5) as the description of an instance of concept C2.

When clauses are executed in a backward chaining manner, they can either
verify that the input object belongs to a concept or produce instances of
concepts. In other words, we attempt to prove an assertion is true with
respect to a background theory. Resolution (Robinson, 1965) provides an
efficient means of deriving a solution to a problem, giving a set of axioms
which define the task environment. The algorithm takes two terms and
resolves them into a most general unifier, as illustrated in Figure 7 by the
execution of a simple Prolog program.

larger(hammer, feather).
denser(hammer, feather).

heavier(A, B) :— denser(A, B), larger(A, B).

heavier(hammer, feather)?

heavier(A, B) :— denser(A, B), larger(A, B). heavier(hammer, feather)?

denser(hammer, feather). denser( hammer, feather ),

larger( hammer, feather )?

larger(hammer, feather).
larger(hammer, feather)?

]

Figure 7: A resolution proof tree from Muggleton and Feng (1990).

The box in the figure contains clauses that make up the theory, or knowledge
base, and the question to be answered, namely, “is it true that a hammer is
heavier than a feather”? A resolution proof is a proof by refutation. That is,
answer the question, we assume that it is false and then see if the addition, to
the theory, of this negative statement results in a contradiction.

The literals on the left hand side of a Prolog clause are positive. Those on the
left hand side are negative. The proof procedure looks for complimentary
literals in two clauses, i.e. literals of opposite sign that unify. In the example in
Figure 10,
heavier (A, B)
and
heavier (hammer, feather)

unify to create the first resolvent,

:— denser(hammer, feather ), heavier (hammer, feather) de.
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A side effect of unification is to create variable substitutions
{A ] hammer, B/ feather}. By continued application of resolution, we can

eventually derive the empty clause, which indicates a contradiction.

Plotkin’s (1970) work “originated with a suggestion of R.J. Popplestone that
since unification is useful in automatic deduction by the resolution method, its
dual might prove helpful for induction. The dual of the most general unifier
of two literals is called the least general generalisation”. At about the same
time that Plotkin took up this idea, J.C. Reynolds was also developing the use
of least general generalisations. Reynolds (1970) also recognised the
connection between deductive theorem proving and inductive learning;:

Robinson’s Unification Algorithm allows the computation of the greatest
common instance of any finite set of unifiable atomic formulas. This
suggests the existence of a dual operation of ‘least common
generalization’. It turns out that such an operation exists and can be
computed by a simple algorithm.

The method of least general generalisations is based on subsumption. A clause
C, subsumes, or is more general than, another clause C, if there is a
substitution o such that C, 2 C; o.

The least general generalisation of

p(g(a), a) (6)
and p(g(b), b) (7)
is p(g(X), X). (8)

Under the substitution {a/X}, (8) is equivalent to (6). and under the
substitution {b/X}, (8) is equivalent to (7). Therefore, the least general
generalisation of p(g(a), a) and p(g(b), b) is p(g(X), X) and results in the inverse
substitution {X/{a, b}}.

Buntine (1988) pointed out that simple subsumption is unable to take
advantage of background information which may assist generalisation.
Suppose we are given two instances of a concept cuddly_pet,

cuddly _ pet(X) < fluffy (X) A dog(X) 9)

cuddly _ pet(X) < fluffy (X) A cat(X) (10)
Suppose we also know the following:

pet (X) <= dog(X) (11)

pet (X) < cat(X) (12)

According to subsumption, the least general generalisation of (4) and (5) is:
cuddly _ pet(X) < fluffy (X) (13)

since unmatched literals are dropped from the clause. However, given the
background knowledge, we can see that this is an over-generalisation. A

better one is:
cuddly _ pet(X) < fluffy (X) A pet (X) (14)

The moral being that a generalisation should only be done when the relevant
background knowledge suggests it. So, observing (9), use clause (11) as a
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rewrite rule to produce a generalisation which is clause (14). which also
subsumes clause (10).

Buntine drew on earlier work by Sammut (Sammut and Banerji, 1986) in
constructing his generalised subsumption. Muggleton and Buntine (1998)
took this approach a step further and realised that through the application of
a few simple rules, they could invert resolution as Plotkin and Reynolds had
wished. Here are two of the rewrite rules in propositional form:

Given a set of clauses, the body of one of which is completely contained in the
bodies of the others, such as:

X<AANBACADANE
Y<— AABAC

the absorption operation results in:

X<YANDAE
Y<—AABAC

Intra-construction takes a group of rules all having the same head, such as:

X< BACADAE
X<—AANBADAF

and replaces them with:

X<BADAZ
Z<—CAE
Z<—ANANF

These two operations can be interpreted in terms of the proof tree shown in
Figure 7. Resolution accepts two clauses and applies unification to find the
maximal common unifier. In the diagram, two clauses at the top of a “V” are
resolved to produce the resolvent at the apex of the “V”. Absorption accepts
the resolvent and one of the other two clauses to produce the third. Thus, it
inverts the resolution step.

Intra-construction automatically creates a new term in its attempt to simplify
descriptions. This is an essential feature of inverse resolution since there may
be terms in a theory that are not explicitly shown in an example and may
have to be invented by the learning program.

Discussion

These methods and others (Muggleton and Feng, 1990; Quinlan, 1990) have
made relational learning quite efficient. Because the language of Horn-clause
logic is more expressive than the other concept description languages we
have seen, it is now possible to learn far more complex concepts than was
previously possible. A particularly important application of this style of
learning is knowledge discovery. There are now vast databases accumulating
information on the genetic structure of human beings, aircraft accidents,
company inventories, pharmaceuticals and countless more. Powerful
induction programs that use expressive languages may be a vital aid in
discovering useful patterns in all these data.

For example, the realities of drug design require descriptive powers that
encompass stereo-spatial and other long-range relations between different
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parts of a molecule, and can generate, in effect, new theories. The
pharmaceutical industry spends over $250 million for each new drug released
onto the market. The greater part of this expenditure reflects today's
unavoidably “scatter-gun” synthesis of compounds which might} possess
biological activity. Even a limited capability to construct predictive theories
from data promises high returns.

The relational program Golem was applied to the drug design problem of
modelling structure-activity relations (King et al, 1992). Training data for the
program was 44 trimethoprim analogues and their observed inhibition of E.
coli dihydrofolate reductase. A further 11 compounds were used as unseen
test data. Golem obtained rules that were statistically more accurate on the
training data and also better on the test data than a Hansch linear regression
model. Importantly, relational learning yields understandable rules that
characterise the stereochemistry of the interaction of trimethoprim with
dihydrofolate reductase observed crystallographically. In this domain,
relational learning thus offers a new approach which complements other
methods, directing the time-consuming process of the design of potent
pharmacological agents from a lead compound, variants of which need to be
characterised for likely biological activity before committing resources to
their synthesis.

8 Conclusion

We have now completed a rapid tour of a variety of learning algorithms and
seen how the method of representing knowledge is crucial in the following
ways:

* Knowledge representation determines the concepts that an algorithm can
and cannot learn.

e Knowledge representation affects the speed of learning. Some
representations lend themselves to more efficient implementation than
others. Also, the more expressive the language, the larger is the search
space.

e Knowledge representation determines the readability of the concept
description. A representation that is opaque to the user may allow the
program to learn, but a representation that is transparent also allows the
user to learn.
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