
Course Introduction
Week 1

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

1

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


COMP6131 Inaugural Offering at UNSW

Welcome to the inaugural offering of COMP6131 at UNSW!

• Pre-course survey: https://forms.gle/r1VLFV8pPmdosPFe7
• Give me some key words about your understanding of this course.
• Give me some courses that you think are related.

• System and Software Security Assessment (COMP6447)
• Security Engineering and Cyber Security (COMP6441/COMP6841)
• Programming Languages and Compilers (COMP3131/COMP9102)
• Advanced C++ Programming (COMP6771)
• Algorithmic Verification (COMP3153/COMP9153)

Your active participation in and off-class discussions, as well as your feedback, will
be invaluable. Hope to make your learning experience an enjoyable and rewarding
one.

2

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://forms.gle/r1VLFV8pPmdosPFe7
https://github.com/SVF-tools/Software-Security-Analysis


COMP6131 Inaugural Offering at UNSW

Welcome to the inaugural offering of COMP6131 at UNSW!
• Pre-course survey: https://forms.gle/r1VLFV8pPmdosPFe7

• Give me some key words about your understanding of this course.
• Give me some courses that you think are related.

• System and Software Security Assessment (COMP6447)
• Security Engineering and Cyber Security (COMP6441/COMP6841)
• Programming Languages and Compilers (COMP3131/COMP9102)
• Advanced C++ Programming (COMP6771)
• Algorithmic Verification (COMP3153/COMP9153)

Your active participation in and off-class discussions, as well as your feedback, will
be invaluable. Hope to make your learning experience an enjoyable and rewarding
one.

2

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://forms.gle/r1VLFV8pPmdosPFe7
https://github.com/SVF-tools/Software-Security-Analysis


COMP6131 Inaugural Offering at UNSW

Welcome to the inaugural offering of COMP6131 at UNSW!
• Pre-course survey: https://forms.gle/r1VLFV8pPmdosPFe7
• Give me some key words about your understanding of this course.

• Give me some courses that you think are related.
• System and Software Security Assessment (COMP6447)
• Security Engineering and Cyber Security (COMP6441/COMP6841)
• Programming Languages and Compilers (COMP3131/COMP9102)
• Advanced C++ Programming (COMP6771)
• Algorithmic Verification (COMP3153/COMP9153)

Your active participation in and off-class discussions, as well as your feedback, will
be invaluable. Hope to make your learning experience an enjoyable and rewarding
one.

2

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://forms.gle/r1VLFV8pPmdosPFe7
https://github.com/SVF-tools/Software-Security-Analysis


COMP6131 Inaugural Offering at UNSW

Welcome to the inaugural offering of COMP6131 at UNSW!
• Pre-course survey: https://forms.gle/r1VLFV8pPmdosPFe7
• Give me some key words about your understanding of this course.
• Give me some courses that you think are related.

• System and Software Security Assessment (COMP6447)
• Security Engineering and Cyber Security (COMP6441/COMP6841)
• Programming Languages and Compilers (COMP3131/COMP9102)
• Advanced C++ Programming (COMP6771)
• Algorithmic Verification (COMP3153/COMP9153)

Your active participation in and off-class discussions, as well as your feedback, will
be invaluable. Hope to make your learning experience an enjoyable and rewarding
one.

2

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://forms.gle/r1VLFV8pPmdosPFe7
https://github.com/SVF-tools/Software-Security-Analysis


COMP6131 Inaugural Offering at UNSW

Welcome to the inaugural offering of COMP6131 at UNSW!
• Pre-course survey: https://forms.gle/r1VLFV8pPmdosPFe7
• Give me some key words about your understanding of this course.
• Give me some courses that you think are related.

• System and Software Security Assessment (COMP6447)
• Security Engineering and Cyber Security (COMP6441/COMP6841)
• Programming Languages and Compilers (COMP3131/COMP9102)
• Advanced C++ Programming (COMP6771)
• Algorithmic Verification (COMP3153/COMP9153)

Your active participation in and off-class discussions, as well as your feedback, will
be invaluable. Hope to make your learning experience an enjoyable and rewarding
one.

2

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://forms.gle/r1VLFV8pPmdosPFe7
https://github.com/SVF-tools/Software-Security-Analysis


COMP6131 Inaugural Offering at UNSW

Welcome to the inaugural offering of COMP6131 at UNSW!
• Pre-course survey: https://forms.gle/r1VLFV8pPmdosPFe7
• Give me some key words about your understanding of this course.
• Give me some courses that you think are related.

• System and Software Security Assessment (COMP6447)
• Security Engineering and Cyber Security (COMP6441/COMP6841)
• Programming Languages and Compilers (COMP3131/COMP9102)
• Advanced C++ Programming (COMP6771)
• Algorithmic Verification (COMP3153/COMP9153)

Your active participation in and off-class discussions, as well as your feedback, will
be invaluable. Hope to make your learning experience an enjoyable and rewarding
one.

2

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://forms.gle/r1VLFV8pPmdosPFe7
https://github.com/SVF-tools/Software-Security-Analysis


Administration and Important Course Links
• Course convenor and lecturer: A/Prof. Yulei Sui
• Email: cs6131@cse.unsw.edu.au
• Course webpage: https://webcms3.cse.unsw.edu.au/COMP6131/24T2
• Lab-Exercise/Assignment specifications, and code templates:
https://github.com/SVF-tools/Software-Security-Analysis

• Course ED forums: https://edstem.org/au/join/7tPnP2
• Important messages will be announced on the course homepage or via email.
• Course admin:

• Xiao Cheng (xiao.cheng@unsw.edu.au)
• Lab Demonstrator:

• Kaiqi Liang (kaiqi.liang@unsw.edu.au)
• Course keywords: Static Analysis and Verification, Security Vulnerabilities,

Control- and Data-Flows, Symbolic Execution, Abstract Interpretation
3

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://webcms3.cse.unsw.edu.au/COMP6131/24T2
https://github.com/SVF-tools/Software-Security-Analysis
https://edstem.org/au/join/7tPnP2
https://github.com/SVF-tools/Software-Security-Analysis


Lectures and Labs

• Lecture
• Time: 11:00 - 13:00, Friday
• Location: Old Main Building G31 (K-K15-G32)

• Lab
• Time: 13:00 - 15:00, Friday
• Location: Old Main Building G32 (K-K15-G31)

• Consultation (appointment is preferred)
• Time: 15:00 - 16:00, Friday
• Location: 501H, K17

4

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Course Aim

In this course, you will learn to create automated code analysis and verification
tools using a modern compiler and an open-source static analysis framework,
to perform code comprehension, vulnerability detection and code verification
in real-world software systems.

5

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Teaching Strategy and Rationale
This course has three major components:

• Lectures (10 weeks excluding Week 6 for study break)
• Labs (10 weeks excluding Week 6 for study break)
• Assignments (Assignments 1-3)

This is a project-based course and you are expected to produce a tool towards the
end of the course and NO paper examination is required!

Assessment Type Name Percentage %

Lab work
Quiz-1 & Exercise-1 10%
Quiz-2 & Exercise-3 10%
Quiz-3 & Exercise-3 10%

Assignment-1 Information flow tracking 20%
Assignment-2 Symbolic execution 25%
Assignment-3 Abstract interpretation 25%

6

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Teaching Strategy and Rationale
This course has three major components:

• Lectures (10 weeks excluding Week 6 for study break)
• Labs (10 weeks excluding Week 6 for study break)
• Assignments (Assignments 1-3)

This is a project-based course and you are expected to produce a tool towards the
end of the course and NO paper examination is required!

Assessment Type Name Percentage %

Lab work
Quiz-1 & Exercise-1 10%
Quiz-2 & Exercise-3 10%
Quiz-3 & Exercise-3 10%

Assignment-1 Information flow tracking 20%
Assignment-2 Symbolic execution 25%
Assignment-3 Abstract interpretation 25%

6

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Lectures
Course contents:

• Foundational theories of static code analysis and verification aimed at
detecting bugs and verifying the absence of bugs.

• Some practical demonstrations of examples and coding
• Problem-solving skills (algorithms, testing, debugging)
• Lecture slides typically available before each lecture. Lectures are recorded.

Get the most out of COMP6131:
• Attend the lectures/labs and get involved! Ask questions in class and on

Ed forums (no pasting code solutions allowed).
• Be open-minded. While you will use C++ to implement your code checker for

analyzing C programs in this course. Consider developing a code checker
using the learned theories within a modern compiler setting.

• Research and development mentality. Keep your curiosity to learn the most
recent/advanced source code analysis techniques in this course.

7

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Lectures
Course contents:

• Foundational theories of static code analysis and verification aimed at
detecting bugs and verifying the absence of bugs.

• Some practical demonstrations of examples and coding
• Problem-solving skills (algorithms, testing, debugging)
• Lecture slides typically available before each lecture. Lectures are recorded.

Get the most out of COMP6131:
• Attend the lectures/labs and get involved! Ask questions in class and on

Ed forums (no pasting code solutions allowed).
• Be open-minded. While you will use C++ to implement your code checker for

analyzing C programs in this course. Consider developing a code checker
using the learned theories within a modern compiler setting.

• Research and development mentality. Keep your curiosity to learn the most
recent/advanced source code analysis techniques in this course.

7

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Labs

Labs: Hands-on experience includes preparatory activities and building the
skills needed for assignments through completing. Labs are typically not
recorded and we may try to record some demonstrations.

• three set of quizzes (multiple choice questions)
• three coding exercises (small-scale)

Submission and marking
• Done individually
• Submitted a single cpp file in each lab exercise by uploading to WebCMS or

via give.
• Automarked (with manual checks and partial marking) against our internal

tests.

8

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Labs

Labs: Hands-on experience includes preparatory activities and building the
skills needed for assignments through completing. Labs are typically not
recorded and we may try to record some demonstrations.

• three set of quizzes (multiple choice questions)
• three coding exercises (small-scale)

Submission and marking
• Done individually
• Submitted a single cpp file in each lab exercise by uploading to WebCMS or

via give.
• Automarked (with manual checks and partial marking) against our internal

tests.

8

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Assignments

Three assignments: Each assignment is built on the previous one to develop
code-checking tools capable of:

• Assignment-1: tracking tainted information flows
• Assignment-2: performing symbolic execution
• Assignment-3: conducting abstract interpretation

Best practice for completing an assignment (e.g., Assignment-1)?
• Correct way: Lab-Quiz-1 → Lab-Exercise-1 → Assignment-1
• Incorrect way: all other orders

9

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Assignments

Three assignments: Each assignment is built on the previous one to develop
code-checking tools capable of:

• Assignment-1: tracking tainted information flows
• Assignment-2: performing symbolic execution
• Assignment-3: conducting abstract interpretation

Best practice for completing an assignment (e.g., Assignment-1)?
• Correct way: Lab-Quiz-1 → Lab-Exercise-1 → Assignment-1
• Incorrect way: all other orders

9

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Assumed Knowledge

• Should have
• Experience in writing, debugging, and testing programs in C (COMP2521,

COMP9024).
• Knowledge of using Git and programming IDEs like vim or VSCode.
• Willingness to learn and open-mindedness.

• Nice to have
• Some knowledge of object-oriented programming (you will get more practice in

C++ programming in our labs).
• Some background knowledge of compilers (e.g., LLVM and SVF).
• Some knowledge of secure coding.
• Experience at different programming ”levels” (e.g. low-level, high-level).

10

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Learning Outcomes
• Practice system programming skills to develop code analysis and

verification techniques to address code security and reliability problems.
• High-quality coding: Commit to writing high-quality, error-free, and

high-performance code, especially within the context of large-scale codebases.
• Compiler basics: Gain insights into compilation, code representation, low-level

instructions, code debugging and profiling.
• Vulnerability Assessment: Understand common vulnerabilities, such as

tainted information flow, buffer overflows, and assertion errors.
• Open-source static analysis framework: learn to build practical tools on top of

open-source frameworks like SVF.
• Formal Verification: Understand formal methods and techniques for verifying

code correctness using mathematical and logical reasoning tools.

• Career and job roles
• Software Engineer; Security Analyst/Engineer; Compiler Engineer; Formal

Methods Engineer; Software Reliability Engineer; Embedded Systems
Developer; Research Scientist (in Academia or Industry);

11

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Learning Outcomes
• Practice system programming skills to develop code analysis and

verification techniques to address code security and reliability problems.
• High-quality coding: Commit to writing high-quality, error-free, and

high-performance code, especially within the context of large-scale codebases.
• Compiler basics: Gain insights into compilation, code representation, low-level

instructions, code debugging and profiling.
• Vulnerability Assessment: Understand common vulnerabilities, such as

tainted information flow, buffer overflows, and assertion errors.
• Open-source static analysis framework: learn to build practical tools on top of

open-source frameworks like SVF.
• Formal Verification: Understand formal methods and techniques for verifying

code correctness using mathematical and logical reasoning tools.
• Career and job roles

• Software Engineer; Security Analyst/Engineer; Compiler Engineer; Formal
Methods Engineer; Software Reliability Engineer; Embedded Systems
Developer; Research Scientist (in Academia or Industry);

11

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Course Schedule

Week Content Lab & Assignment Start Due (23:59, Wednesday)

1
Lecture: Course Overview and Introduction

Quiz-1 + Exercise-1 (10%) -Lab: C++ practices, vulnerability assessment and compiler IR

2
Lecture: Control and Data Flows

Assignment 1 (20%) -Lab: Code graphs, SVF, constraints solving

3
Lecture: Pointer Aliasing and Taint Tracking

- Quiz-1 + Exercise-1Lab: Tainted information flow tracking

4
Lecture: Code Verification Basis

Quiz-2 + Exercise-2 (10%) Assignment-1Lab: Verification concepts, predicate logic

5
Lecture: Automated Theorem Proving

Assignment 2 (25%) -Lab: Manual assertion-based verification using Z3
6 Flexibility Week - -

7
Lecture: Code Verification using Symbolic Execution

- Quiz-2 + Exercise-2Lab: Automated code assertion verification using Z3

8
Lecture: Abstract Interpretation Foundations

Quiz-3 + Exercise-3 (10%) Assignment-2Lab: Basic concepts and examples

9
Lecture: Code Verification using Abstract Interpretation

Assignment 3 (25%) -Lab: Manual assertion-based verification using Z3

10
Lecture: Buffer Overflow Detection using Abstract Interpretation

-
Quiz-3 + Exercise-3

Lab: Implementation and testing Assignment-3 (Week 11)
12

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Software-Security-Analysis


Assessment Guidelines
• Joint Work Prohibited: Collaboration on this assignment is not allowed.

Each quiz, exercise, and assignment is submitted and marked individually.
• Individual Submission: The work you submit must be entirely your own.

Submitting any work, even partially, written by someone else is prohibited.
• Assessment Marking: Submissions will be examined both automatically and

manually for external authorship.
• Prohibition on Sharing Work: Sharing, publishing, or distributing your

assignment is not allowed even after the course ends. Do not share your work
with anyone other than the COMP6131 teaching staff. Do not publish your
lab or assignment code online (e.g., on a public GitHub repository), as
they may be used by future students.

Violation of these conditions may result in an academic integrity investigation. For
more information, read the UNSW Student Code.

13

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://www.unsw.edu.au/governance/policy/browse-a-z
https://github.com/SVF-tools/Software-Security-Analysis


Marking and Plagiarism
• Please refer to specs for each assessment before you start at WebCMS
• No extension is allowed and late submission is strongly discouraged.

• The UNSW standard late penalty for assessment is 5% per day for 5 days -
this is implemented hourly for this assignment. Your assignment mark will be
reduced by 0.2% for each hour (or part thereof) late past the submission
deadline.

• For example, if an assignment worth 60% was submitted half an hour late, it
would be awarded 59.8%, whereas if it was submitted past 10 hours late, it
would be awarded 57.8%.

• Beware - submissions 5 or more days late will receive zero marks. This again
is the UNSW standard assessment policy.

• The marking results will normally be released one week after each
submission deadline.

Plagiarism: see course outline for penalties

14

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://webcms3.cse.unsw.edu.au/COMP6131/24T2/outline
https://github.com/SVF-tools/Software-Security-Analysis


Marking and Plagiarism
• Please refer to specs for each assessment before you start at WebCMS
• No extension is allowed and late submission is strongly discouraged.
• The UNSW standard late penalty for assessment is 5% per day for 5 days -

this is implemented hourly for this assignment. Your assignment mark will be
reduced by 0.2% for each hour (or part thereof) late past the submission
deadline.

• For example, if an assignment worth 60% was submitted half an hour late, it
would be awarded 59.8%, whereas if it was submitted past 10 hours late, it
would be awarded 57.8%.

• Beware - submissions 5 or more days late will receive zero marks. This again
is the UNSW standard assessment policy.

• The marking results will normally be released one week after each
submission deadline.

Plagiarism: see course outline for penalties
14

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://webcms3.cse.unsw.edu.au/COMP6131/24T2/outline
https://github.com/SVF-tools/Software-Security-Analysis


Course Materials and Resources
No single textbook covers all the course content. Recommended references and
an abundance of online materials are available below:

• Static Value-Flow Analysis Framework for Source Code
• https://github.com/SVF-tools/Teaching-Software-Security-Analysis
• https://github.com/SVF-tools/SVF

• Compilers: Principles, Techniques, and Tools Hardcover,
https://www.amazon.com.au/Compilers-Alfred-V-Aho/dp/0321486811

• LLVM Compiler https://llvm.org/
• Symbolic Execution https://en.wikipedia.org/wiki/Symbolic_execution

• Abstract Interpretation
https://en.wikipedia.org/wiki/Abstract_interpretation

• Z3 Theorem Prover
• https://github.com/Z3Prover/z3
• https://theory.stanford.edu/~nikolaj/programmingz3.html

15

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

https://github.com/SVF-tools/Teaching-Software-Security-Analysis
https://github.com/SVF-tools/SVF
https://www.amazon.com.au/Compilers-Alfred-V-Aho/dp/0321486811
https://llvm.org/
https://en.wikipedia.org/wiki/Symbolic_execution
https://en.wikipedia.org/wiki/Abstract_interpretation
https://github.com/Z3Prover/z3
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://github.com/SVF-tools/Software-Security-Analysis

