COMP4418, 2019 – Exercises

1 Answer Set Programming

1.1 Modelling

Let $S = \{s_1, \ldots, s_n\}$ be a set of sets. A set cover of S is a set $C \subseteq S$ such that $\bigcup_{s \in S} s = \bigcup_{s \in C} s$. A k-set cover is a set cover of size k, that is, |C| = k.

For instance, for an input $S = \{\{1, 2\}, \{2, 3\}, \{4, 5\}, \{1, 2, 3\}\}$, there is a 2-set cover $C = \{\{1, 2, 3\}, \{4, 5\}\}$ since $\bigcup_{s \in S} s = \{1, 2\} \cup \{2, 3\} \cup \{4, 5\} \cup \{1, 2, 3\} = \{1, 2, 3\} \cup \{4, 5\} = \bigcup_{s \in C} s$.

Write an ASP program that decides the k-SET-COVER problem:

Input: a set of sets and a natural number $k \ge 0$.

Problem: decide if there is a k-set cover.

Assume the input parameter $S = \{s_1, \ldots, s_n\}$ is encoded by a binary predicate **s** in the way that $x \in s_i$ iff $\mathbf{s}(i,x)$. The input parameter k is given as constant symbol k. Use a unary predicate **c** to represent the output C in the way that $s_i \in C$ iff $\mathbf{c}(i)$.

1.2 Semantics

Consider the following program P.

$$a.$$

$$c \leftarrow \operatorname{not} b, \operatorname{not} d.$$

$$d \leftarrow a, \operatorname{not} c.$$

Determine the stable models of S.

S	Reduct P^S	Stable model?
$\{a,b,c,d\}$	<i>a</i> .	×
$\{a,b,c\}$		
$\{a,b,d\}$		
$\{a,c,d\}$		
$\{b,c,d\}$		
$\{a,b\}$		
$\{a,c\}$		
$\{a,d\}$		
$\{b,c\}$		
$\{b,d\}$		
$\{c,d\}$		
$\{a\}$		
$\{b\}$		
$\{c\}$		
$\{d\}$		
{}		