
Reinforcement
Learning

COMP3431 Robot Software Architectures

A Simple Learning Robot

Reinforcement Learning

• “Stumpy” receives a reward after each action

• Did it move forward or not?

• After each move, updates its policy

• Continues trying to maximise its reward

Pole Balancing

• Pole balancing can be learned the same way
except that reward is only received at the end

• after falling or hitting the end of the track

x

θ

Boxes

• State space is discretised

• Each “box” represents a
subset of state space

• When system lands in a box,
execute action specified

• left push

• right push

MENACE  
(Machine Educable Noughts and Crosses Engine – D.Michie, 1961)

Simulation
.

.

Parameters
mc = 1.0 kg mass of cart

mp = 1.0 kg mass of pole

l = 0.5 m distance of centre of mass of pole from the pivot

g = 9.8 ms-2 acceleration due to gravity

Ft = ± 10 N force applied to cart

t = 0.02 s time interval of simulation

The BOXES Algorithm
• Each box contains statistics on performance of

controller, which are updated after each failure

• How many times each action has been performed
(usage)

• The sum of lengths of time the system has
survived after taking a particular action (LifeTime)

• Each sum is weighted by a number less than one
which places a discount on earlier experience.

Update Rule
if an action has not been tested

choose that action

else if

choose left

else

choose right

LeftLife
LeftUsagek

> RightLife
RightUsagek

k is a bias to force exploration
e.g. k = 1.4

Performance
• BOXES is much faster than genetic algorithm

• Only 75 trials, on average, to reach 10,000 time
steps

• But only works for episodic problems

• i.e. has a specific termination

• Doesn’t work for continuous problems like Stumpy

State Transition Graph

States and Actions
• Each node is a state

• Actions cause transitions from one state to another

• A policy is the set of transition rules

• i.e. which action to apply in a given state

• Agent receives a reward after each action

• Actions may be non-deterministic

• Same action may not always produce same state

Markov Decision Process
(MDP)

• Assume that current state has all the information
needed to decide which action to take

Grid World Example

Expected Reward
• Try to maximise expected future reward:

• V is the value of state S under policy 𝛑

• 𝛄 is a discount factor (0..1)

V π (st) = rt + γ rt+1 + γ
2rt+2 +…

= γ irt+i
i=0

∞

∑

Q Function
• How to choose an action in a state?

• The Q value for an action, a, in a state, s, is the
immediate reward for the action plus the discounted
value of following the optimal policy after that

• V* is value obtained by following the optimal policy

• is the succeeding state, assuming the optimal
policy

Q(s,a) = r(s,a)+ γV *(δ (s,a))

δ (s,a)

Q Learning

�

initialise Q(s,a)= 0 for all s and a
observe current state s
repeat

select an action a and execute it
observe immediate reward r and next state s'

 Q(s,a)← r + max
a'
Q(s',a')

s← s'

Exploration vs Exploitation
• How do you choose an action?

• Random

• Pick the current “best” action

• Combination:

• most of the time pick the best action

• occasionally throw in random action

Background

• Reinforcement learning is based in earlier work in
optimisation: dynamic programming

• Text book: Sutton & Barto

Reinforcement Learning
Variants

• There are many variations on reinforcement
learning to improve search.

• RL was one of the components of alphaGo, which
recently beat a Go master

• Used to learn helicopter aerobatics

