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A Simple Learning Robot



Reinforcement Learning

• “Stumpy” receives a reward after each action 

• Did it move forward or not? 

• After each move, updates its policy  

• Continues trying to maximise its reward



Pole Balancing

• Pole balancing can be learned the same way 
except that reward is only received at the end 

• after falling or hitting the end of the track
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Boxes

• State space is discretised 

• Each “box” represents a 
subset of state space 

• When system lands in a box, 
execute action specified 

• left push 

• right push



MENACE  
(Machine Educable Noughts and Crosses Engine – D.Michie, 1961)



Simulation
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Parameters
mc = 1.0 kg mass of cart

mp = 1.0 kg mass of pole

l = 0.5 m distance of centre of mass of pole from the pivot 

g = 9.8 ms-2 acceleration due to gravity

Ft = ± 10 N force applied to cart

t = 0.02 s time interval of simulation



The BOXES Algorithm
• Each box contains statistics on performance of 

controller, which are updated after each failure 

• How many times each action has been performed 
(usage) 

• The sum of lengths of time the system has 
survived after taking a particular action (LifeTime) 

• Each sum is weighted by a number less than one 
which places a discount on earlier experience.



Update Rule
if an action has not been tested 

choose that action 

else if  

choose left 

else

choose right

LeftLife
LeftUsagek

> RightLife
RightUsagek

k is a bias to force exploration 
e.g. k = 1.4



Performance
• BOXES is much faster than genetic algorithm 

• Only 75 trials, on average, to reach 10,000 time 
steps 

• But only works for episodic problems 

• i.e. has a specific termination 

• Doesn’t work for continuous problems like Stumpy



State Transition Graph



States and Actions
• Each node is a state 

• Actions cause transitions from one state to another 

• A policy is the set of transition rules 

• i.e. which action to apply in a given state 

• Agent receives a reward after each action 

• Actions may be non-deterministic 

• Same action may not always produce same state



Markov Decision Process 
(MDP)

• Assume that current state has all the information 
needed to decide which action to take



Grid World Example



Expected Reward
• Try to maximise expected future reward: 

• V is the value of state S under policy 𝛑  

• 𝛄 is a discount factor (0..1)

V π (st ) = rt + γ rt+1 + γ
2rt+2 +…

= γ irt+i
i=0
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Q Function
• How to choose an action in a state? 

• The Q value for an action, a, in a state, s, is the 
immediate reward for the action plus the discounted 
value of following the optimal policy after that 

• V* is value obtained by following the optimal policy  

•           is the succeeding state, assuming the optimal 
policy

Q(s,a) = r(s,a)+ γV *(δ (s,a))

δ (s,a)



Q Learning

� 

initialise Q(s,a)= 0 for all s and a
observe current state s
repeat

select an action a and execute it
observe immediate reward r and next state s'

 Q(s,a)← r + max
a'
Q(s',a')

s← s'



Exploration vs Exploitation
• How do you choose an action? 

• Random 

• Pick the current “best” action 

• Combination: 

• most of the time pick the best action 

• occasionally throw in random action



Background

• Reinforcement learning is based in earlier work in 
optimisation: dynamic programming 

• Text book: Sutton & Barto



Reinforcement Learning 
Variants

• There are many variations on reinforcement 
learning to improve search. 

• RL was one of the components of alphaGo, which 
recently beat a Go master 

• Used to learn helicopter aerobatics


