Reinforcement
|_earning

COMP3431 Robot Software Architectures

A Simple Learning Robot

/

Reinforcement Learning

e “Stumpy’” receives a reward after each action
* Did it move forward or not?
e After each move, updates its policy

e Continues trying to maximise its reward

Pole Balancing

\

o—o

X

e Pole balancing can be learned the same way
except that reward is only received at the end

 after falling or hitting the end of the track

Boxes

* State space is discretised

* Each "box” represents a
subset of state space

* When system lands in a box,

execute action specified

* left push

* right push

Vil A A A A A
///////
—>—>—>—><_<_//
—>—>—>—>(_<_//
> |=>|=|= /

<l

— — /]

— |« < |1 |/
« | « <—<—//
« |« | « <—<—/

(Machine Educable Noughts and Crosses Engine — D.Michie, 1961)

M

el A TS

I 82 hu:. LL s hvui

0l Y od o'

i LR I rErEE
| s

- Mg
- gl & -.-!.DQ\!
I ._. Ln\ I\L.\ Tadsladad ..
TR

Simulation

Xo = X+ TX,
X = X+ X,
9“.] - 9,+Tet

gwl o ér + Tét

Fi+ mpl [6°sin B, — 6, cos O,]

X =
me+my

gsin 0, + 0059,{

mg+ mp

] 4 my, cos’ 8,
3 me+ mp

~F, - m,,zé,zsine,]

6, =

Parameters

me.=1.0Kkg mass of cart

my,=1.0kg mass of pole

[=05m distance of centre of mass of pole from the pivot
g =98 ms? acceleration due to gravity

F:=x 10N force applied to cart

t=0.02s time interval of simulation

The BOXES Algorithm

« Each box contains statistics on performance of
controller, which are updated after each failure

 How many times each action has been performed
(usage)

* The sum of lengths of time the system has
survived after taking a particular action (LifeTime)

 Each sum is weighted by a number less than one
which places a discount on earlier experience.

Update Rule

iIf an action has not been tested

choose that action

else if LeftLife . {nghthfe :
LeftUsage” RightUsage

choose left

k is a bias to force exploration
else eg. k=14

choose right

Performance

« BOXES is much faster than genetic algorithm

* Only 75 trials, on average, to reach 10,000 time
steps

e But only works for episodic problems
* |.e. has a specific termination

* Doesn’t work for continuous problems like Stumpy

State Transition Graph

States and Actions

Each node is a state

Actions cause transitions from one state to another
A policy is the set of transition rules

e |.e. which action to apply in a given state

Agent receives a reward after each action

Actions may be non-deterministic

e Same action may not always produce same state

Markov Decision Process
(MDP)

e Assume that current state has all the information
needed to decide which action to take

Grid World Example

Coal
Lk
0 | 0 |
0 0 0
e -) Lo T5) L T5—

ExXpected Reward

e Try to maximise expected future reward:

2
Vi) =n 47, +7 T+

+1

* Jis the value of state S under policy

e v is a discount factor (0..1)

Q Function

How to choose an action in a state?
O(s,a)=r(s,a)+yV (8(s,a))

The Q value for an action, a, in a state, s, is the
immediate reward for the action plus the discounted
value of following the optimal policy after that

V" is value obtained by following the optimal policy

o(s,a)is the succeeding state, assuming the optimal
policy

Q Learning

initialise Q(s,a)=0 for all s and a
observe current state s
repeat
select an action a and execute it
observe immediate reward r and next state s'

J(s,a) < r+maxQ(s',a')

s S

Exploration vs Exploitation

* How do you choose an action?
« Random
e Pick the current "best” action
« Combination:
* most of the time pick the best action

* occasionally throw in random action

Background

* Reinforcement learning is based in earlier work in
optimisation: dynamic programming

e Text book: Sutton & Barto

Reinforcement Learning
Variants

* There are many variations on reinforcement
learning to improve search.

 RL was one of the components of alphaGo, which
recently beat a Go master

 Used to learn helicopter aerobatics

