COMP4418: Knowledge Representation and Reasoning-Solutions to Exercise 1 Propositional Logic

1. (i) $(\neg J a \wedge \neg J o) \rightarrow T$

Where:
Ja: Jane is in town
Jo: John is in town
T: we will play tennis
(ii) $R \vee \neg R$

Where:
R : it will rain today
(iii) $\neg S \rightarrow \neg P$

Where:
S : you study
P : you will pass this course
2. (i) $P \rightarrow Q$
$\neg P \vee Q$ (remove \rightarrow)
(ii) $(P \rightarrow \neg Q) \rightarrow R$
$\neg(\neg P \vee \neg Q) \vee R$ (remove \rightarrow)
$(\neg \neg P \wedge \neg \neg Q) \vee R$ (De Morgan)
$(P \wedge Q) \vee R$ (Double Negation)
$(P \vee R) \wedge(Q \vee R)($ Distribute \vee over $\wedge)$
(iii) $\neg(P \wedge \neg Q) \rightarrow(\neg R \vee \neg Q)$
$\neg \neg(P \wedge \neg Q) \vee(\neg R \vee \neg Q)$ (remove \rightarrow)
$(P \wedge \neg Q) \vee(\neg R \vee \neg Q)$ (Double Negation)
$(P \vee \neg R \vee \neg Q) \wedge(\neg Q \vee \neg R \vee \neg Q)$ (Distribute \vee over \wedge)
This can be further simplified to: $((P \vee \neg R \vee \neg Q) \wedge(\neg Q \vee \neg R)$
And in fact this cab be simplified to $\neg Q \vee \neg R$ since $(\neg Q \vee \neg R) \vdash$ $(P \vee \neg R \vee \neg Q)$
3. (i)

P	Q	$P \rightarrow Q$	$\neg Q$	$\neg P$
T	T	T	F	T
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

In all rows where both $P \rightarrow Q$ and $\neg Q$ are true, $\neg P$ is also true. Therefore, inference is valid.
(ii)

P	Q	$\neg P$	$\neg Q$	$P \rightarrow Q$	$\neg Q \rightarrow \neg P$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

In all rows where both $P \rightarrow Q$ is true, $\neg Q \rightarrow \neg P$ is also true. Therefore, inference is valid.
(iii)

P	Q	R	$P \rightarrow Q$	$Q \rightarrow R$	$P \rightarrow R$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	T	T
T	F	F	F	T	F
F	T	T	T	T	T
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	T	T

In all rows where both $P \rightarrow Q$ and $Q \rightarrow R$ are true, $P \rightarrow R$ is also true. Therefore, inference is valid.
4. (i) $\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(\neg Q)$
$\equiv \neg Q$
$\operatorname{CNF}(\neg \neg P)$
$\equiv P$ (Double Negation)
Proof:

1. $\neg P \vee Q$ (Hypothesis)
2. $\neg Q$
(Hypothesis)
3. P (Negation of Conclusion)
4. $Q \quad 1,3$ Resloution
5. $\square \quad 2,4$ Resloution
(ii) $\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(\neg(\neg Q \rightarrow \neg P))$
$\equiv \neg(\neg \neg Q \vee \neg P)$ (Remove \rightarrow)
$\equiv \neg(Q \vee \neg P)$ (Double Negation)
$\equiv \neg Q \wedge \neg \neg P$ (De Morgan)
$\equiv \neg Q \wedge P$ (Double Negation)
Proof:

Proof:	$\neg P \vee Q$	(Hypothesis)
1.	$\neg P \vee$	(Negation of Conclusion)
2.	$\neg Q$	(Negation of Conclusion)
3.	P	1, 2 Resolution
4.	$\neg P$	3,4 Resolution
5.	\square	

(iii) $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$
$\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(Q \rightarrow R)$
$\equiv \neg Q \vee R$
$\operatorname{CNF}(\neg(P \rightarrow R))$
$\equiv \neg(\neg P \vee R)$ (Remove \rightarrow)
$\equiv \neg \neg P \wedge \neg R$ (De Morgan)
$\equiv P \wedge \neg R$ (Double Negation)
Proof:

1. $\neg P \vee Q$ (Hypothesis)
2. $\neg Q \vee R \quad$ (Hypothesis)
3. P (Negation of Conclusion)
4. $\neg R \quad$ (Negation of Conclusion)
5. $Q \quad 1,3$ Resoltion
6. $R \quad 2,5$ Resolution
7.

4, 6 Resolution
5. (i)

P	Q	$\neg P$	$P \vee Q$	$(P \vee Q) \wedge \neg P$	$((P \vee Q) \wedge \neg P) \rightarrow Q$
T	T	F	T	F	T
T	F	F	T	F	T
F	T	T	T	T	T
F	F	T	F	F	T

Last column is always true no matter what truth assignment to the atoms P and Q. Therefore $((P \vee Q) \wedge \neg P) \rightarrow Q$ is a tautology.
(ii) $((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$
(iii)

P	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$(P \rightarrow Q) \wedge \neg(P \rightarrow R)$	$P \rightarrow Q$
$((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$						
T						
T	T	F	T	F	F	F
T	F	T	F	T	F	T
T	F	F	F	T	F	T
F	T	T	T	T	T	T
F	T	F	T	F	F	T
F	F	T	T	T	T	T
F	F	F	T	T	T	T
T	T					

Last column is always true no matter what truth assignment to the
atoms P, Q and R. Therefore $((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$
is a tautology.
(iv)

P	$\neg P$	$\neg P \wedge P$	$\neg(\neg P \wedge P)$	$\neg(\neg P \wedge P) \wedge P$
T	F	F	T	T
F	T	F	T	F

Last column is not always true. Therefore $\neg(\neg P \wedge P) \wedge P$ is not a tautology.
(v) $(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$

P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg P \wedge \neg Q$	$\neg(\neg P \wedge \neg Q)$	$(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$
T	T	F	F	T	F	T	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	F	T	F	T

6. (i) $\operatorname{CNF}(\neg(((P \vee Q) \wedge \neg P) \rightarrow Q)) \equiv \neg(\neg((P \vee Q) \wedge \neg P) \vee Q)$ (Remove \rightarrow)
$\equiv \neg \neg((P \vee Q) \wedge \neg P) \wedge \neg Q)$ (DeMorgan)
$\equiv(P \vee Q) \wedge \neg P) \wedge \neg Q$ (Double Negation)

Proof:

1. $\quad P \vee Q$ (Negated Conclusion)
2. $\neg P \quad$ (Negated Conclusion)
3. $\neg Q \quad$ (Negated Conclusion)
4. $Q \quad 1,2$ Resolution
5. $\square \quad 3,4$ Resolution

Therefore $\neg(((P \vee Q) \wedge \neg P) \rightarrow Q)$ is a tautology.
(ii) $\operatorname{CNF}(\neg(((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)))$
$\equiv \neg(\neg((\neg P \vee Q) \wedge \neg(\neg P \vee R)) \vee(\neg P \vee Q))$ (Remove \rightarrow)
$\equiv \neg \neg((\neg P \vee Q) \wedge \neg(\neg P \vee R)) \wedge \neg(\neg P \vee Q)$ (De Morgan)
$\equiv(\neg P \vee Q) \wedge(\neg \neg P \wedge \neg R) \wedge(\neg \neg P \wedge \neg Q)$ (Double Negation and De Morgan)
$\equiv(\neg P \vee Q) \wedge(P \wedge \neg R) \wedge(P \wedge \neg Q)($ DoubleNegation $)$
Proof:
$\begin{array}{lll}\text { 1. } & \neg P \vee Q & \text { (Negated Conclusion) } \\ \text { 2. } & P & \text { (Negated Conclusion) }\end{array}$
3. $\neg R \quad$ (Negated Conclusion)
4. $\neg Q \quad$ (Negated Conclusion)
5. $Q \quad 1,2$ Resolution
6.

4, 5 Resolution
Therefore $((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$ is a tautology.
(iii) $\operatorname{CNF}(\neg(\neg(\neg P \wedge P) \wedge P))$
$\equiv \neg \neg(\neg P \wedge P) \vee \neg P$ (De Morgan)
$\equiv(\neg P \wedge P) \vee \neg P$ (Double Negation)
$\equiv(\neg P \vee \neg P) \vee(P \vee \neg P)$ (Distribute \wedge over \vee)
$\equiv \neg P$ (Can simplify to this by removing repetition and tautologies)
Proof:

1. $\neg P \quad$ (Negated Conclusion)

Cannot obtain empty clause using resolution so $\neg(\neg P \wedge P) \wedge P$ is not a tautology.
(iv) $\operatorname{CNF}(\neg((P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q))) \equiv \neg(\neg(P \vee Q) \vee \neg(\neg P \wedge \neg Q))$
(Remove \rightarrow)
$\equiv \neg \neg(P \vee Q) \vee \neg \neg(\neg P \wedge \neg Q))$ (De Morgan)
$\equiv(P \vee Q) \vee(\neg P \wedge \neg Q))$ (Double Negation)

Proof:

1. $(P \vee Q) \quad$ (Negated Conclusion)
2. $\quad \neg Q \quad$ (Negated Conclusion)
3. $\neg P \quad$ (Negated Conclusion)
4. $Q \quad 1,2$ Resolution
5. $\square \quad 3,4$, Resolution

Therefore $(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$ is a tautology.

