3. Basics of Parameterized Complexity COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

Introduction

- Vertex Cover
- Coloring
- Clique
- Δ -Clique

2 Basic Definitions

1 Introduction

- Vertex Cover
- Coloring
- Clique
- Δ -Clique

2 Basic Definitions

1 Introduction

Vertex Cover

- Coloring
- Clique
- Δ -Clique

2 Basic Definitions

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

- brute-force: $O^*(2^n)$
- brute-force: $O^*(n^k)$
- vc1: $O^*(2^k)$ (cf. Lecture 1)
- vc2: $O^*(1.4656^k)$ (cf. Lecture 1)
- fastest known: $O(1.2738^k + k \cdot n)$ [CKX10]

n = 1000 vertices, k = 20 parameter

	Running Time	
Theoretical	Nb of Instructions	Real
2^n	$1.07 \cdot 10^{301}$	$4.941 \cdot 10^{282}$ years
n^k	10^{60}	$4.611\cdot 10^{41}$ years
$2^k \cdot n$	$1.05\cdot 10^9$	15.26 milliseconds
$1.4656^k \cdot n$	$2.10\cdot 10^6$	0.31 milliseconds
$1.2738^k + k \cdot n$	$2.02 \cdot 10^4$	0.0003 milliseconds

Notes:

- We assume that 2^{36} instructions are carried out per second.
- The Big Bang happened roughly $13.5\cdot 10^9$ years ago.

Confine the combinatorial explosion to a parameter k.

(1) Which problem-parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem-parameter combinations are there algorithms with running times of the form

 $f(k) \cdot n^{O(1)},$

where the f is a computable function independent of the input size n? (2) How small can we make the f(k)?

|--|

Input:	an	instance	of	the	problem
--------	----	----------	----	-----	---------

Parameter: a parameter

Question: a YES-NO question about the instance and the parameter

• A parameter can be

- solution size
- input size (trivial parameterization)
- related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
- combinations of parameters
- etc.

Coloring

- Clique
- Δ -Clique
- 2 Basic Definitions

Coloring

A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Brute-force: $O^*(k^n)$, where n = |V(G)|. Fastest known: $O^*(2^n)$ by inclusion-exclusion [BHK09] FPT?

- Known: COLORING is NP-complete when k = 3
- Suppose there was a $O^*(f(k))$ -time algorithm for COLORING
 - Then, 3-COLORING can be solved in $O^*(f(3)) \subseteq O^*(1)$ time
 - Therefore, P = NP
- Therefore, COLORING is not FPT unless P = NP

Introduction

- Vertex Cover
- Coloring
- Clique
- Δ -Clique
- 2 Basic Definitions
- 3 Further Reading

A clique in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

Is CLIQUE NP-complete when k is a fixed constant? Is it FPT?

- For each subset $S \subseteq V$ of size k, check whether all vertices of S are adjacent
- Running time: $O^*\left(\binom{n}{k}\right) \subseteq O^*(n^k)$
- When $k \in O(1)$, this is polynomial
- \bullet But: we do not currently know an FPT algorithm for CLIQUE
- Since CLIQUE is W[1]-hard, we believe it is not FPT. (See lecture on *W*-hardness.)

Introduction

- Vertex Cover
- Coloring
- Olique
- Δ -Clique
- 2 Basic Definitions

Δ -CLIQUE

Is Δ -CLIQUE FPT?

```
Input: A graph G and an integer k.

Output: YES if G has a clique of size k, and NO otherwise.

if k = 0 then

\lfloor return YES

else if k > \Delta(G) + 1 then

\lfloor return NO

else

/* A clique of size k contains at least one vertex v.
```

```
Input: A graph G and an integer k.
Output: YES if G has a clique of size k, and No otherwise.
if k = 0 then
  L return YES
else if k > \Delta(G) + 1 then
  L return No
else
  /* A clique of size k contains at least one vertex v.
  For each v \in V, we check whether G has a k-clique S
  containing v (note that S \subseteq N_G[v] in this case). */
```

```
Input: A graph G and an integer k.
Output: YES if G has a clique of size k, and NO otherwise.
if k = 0 then
return YES
else if k > \Delta(G) + 1 then
 return No
else
   /* A clique of size k contains at least one vertex v.
       For each v \in V, we check whether G has a k-clique S
       containing v (note that S \subseteq N_G[v] in this case).
                                                                       */
   foreach v \in V do
      foreach S \subseteq N_G[v] with |S| = k do
         if S is a clique in G then
           ∟ return YES
   return No
```

```
Input: A graph G and an integer k.
Output: YES if G has a clique of size k, and NO otherwise.
if k = 0 then
return YES
else if k > \Delta(G) + 1 then
return No
else
   /* A clique of size k contains at least one vertex v.
       For each v \in V, we check whether G has a k-clique S
       containing v (note that S \subseteq N_G[v] in this case).
                                                                           */
   foreach v \in V do
       foreach S \subseteq N_G[v] with |S| = k do
       if S is a clique in G then
          L return YES
   return No
Running time: O^*((\Delta + 1)^k) \subseteq O^*((\Delta + 1)^{\Delta}). (FPT for parameter \Delta)
```

Introduction

- Vertex Cover
- Coloring
- Clique
- Δ -Clique

2 Basic Definitions

n: instance size

k: parameter

P: class of problems that can be solved in $n^{O(1)}$ time FPT: class of parameterized problems that can be solved in $f(k) \cdot n^{O(1)}$ time XP: class of parameterized problems that can be solved in $f(k) \cdot n^{g(k)}$ time ("polynomial when k is a constant")

$\mathsf{P} \subseteq \mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \cdots \subseteq \mathsf{W}[P] \subseteq \mathsf{XP}$

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in $2^{o(n)}$ time, where *n* is the number of variables.

Note: We assume that f is computable and non-decreasing.

Introduction

- Vertex Cover
- Coloring
- Clique
- Δ -Clique

2 Basic Definitions

- Chapter 1, Introduction in [Cyg+15]
- Chapter 2, The Basic Definitions in [DF13]
- Chapter I, Foundations in [Nie06]
- Preface in [FG06]

References I

- [BHK09] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. "Set Partitioning via Inclusion-Exclusion". In: SIAM Journal on Computing 39.2 (2009), pp. 546–563.
- [CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. "Improved upper bounds for vertex cover". In: *Theoretical Computer Science* 411.40-42 (2010), pp. 3736–3756.
- ▶ [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- ► [FG06] Jörg Flum and Martin Grohe. *Parameterized Complexity Theory*. Springer, 2006.
- ► [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.