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1 Vertex Cover

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such that for each edge {u, v} ∈ E, we have
u ∈ S or v ∈ S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k?

a
b c

d e

1.1 Simplification rules

(Degree-0)
If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for any instance, it produces an equivalent instance.
Two instances I, I ′ are equivalent if they are both Yes-instances or they are both No-instances.

Lemma 1. (Degree-0) is sound.
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Proof. First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of size at most k. Then, S is
also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a Yes-instance.

Now, suppose (G, k) is a Yes-instance. For the sake of contradiction, assume (G − v, k) is a No-instance. Let
S be a vertex cover for G of size at most k. But then, S \ {v} is a vertex cover of size at most k for G − v; a
contradiction.

(Degree-1)
If ∃v ∈ V such that dG(v) = 1, then set G← G−NG[v] and k ← k − 1.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, NG[v] = {u, v}.
If S is a vertex cover of G of size at most k, then S \ {u, v} is a vertex cover of G−NG[v] of size at most k− 1,

because u ∈ S or v ∈ S. If S′ is a vertex cover of G−NG[v] of size at most k − 1, then S′ ∪ {u} is a vertex cover
of G of size at most k, since all edges that are in G but not in G−NG[v] are incident to v.

(Large Degree)
If ∃v ∈ V such that dG(v) > k, then set G← G− v and k ← k − 1.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If v /∈ S, then NG(v) ⊆ S, contradicting that |S| ≤ k.

(Number of Edges)
If dG(v) ≤ k for each v ∈ V and |E| > k2 then return No

Lemma 4. (Number of Edges) is sound.

Proof. Assume dG(v) ≤ k for each v ∈ V and |E| > k2. Suppose S ⊆ V , |S| ≤ k, is a vertex cover of G. We have
that S covers at most k2 edges. However, |E| ≥ k2 + 1. Thus, S is not a vertex cover of G.

1.2 Preprocessing algorithm

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G′ and an integer k′ such that G has a vertex cover of size at most k if and only if G′ has

a vertex cover of size at most k′.

G′ ← G
k′ ← k
repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G′, k′)
until no simplification rule applies
return (G′, k′)

Effectiveness of preprocessing algorithms

• How effective is VC-preprocess?

• We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

• Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance
for Π, it returns an instance for Π that is strictly smaller.

• → executing it a linear number of times reduces the instance to a single bit

• → such an algorithm would solve Π in polynomial time

• For NP-hard problems this is not possible unless P = NP

• We need a different measure of effectiveness
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Measuring the effectiveness of preprocessing algorithms

• We will measure the effectiveness in terms of the parameter

• How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 5. For any instance (G, k) for Vertex Cover, VC-preprocess produces an equivalent instance (G′, k′) of
size O(k2).

Proof. Since all simplification rules are sound, (G = (V,E), k) and (G′ = (V ′, E′), k′) are equivalent. By (Number
of Edges), |E′| ≤ (k′)2 ≤ k2. By (Degree-0) and (Degree-1), each vertex in V ′ has degree at least 2 in G′. Since∑

v∈V ′ dG′(v) = 2|E′| ≤ 2k2, this implies that |V ′| ≤ k2. Thus, |V ′|+ |E′| ⊆ O(k2).

2 Kernelization algorithms

Kernelization: definition

Definition 6. A kernelization for a parameterized problem Π is a polynomial time algorithm, which, for any
instance I of Π with parameter k, produces an equivalent instance I ′ of Π with parameter k′ such that |I ′| ≤ f(k)
and k′ ≤ f(k) for a computable function f . We refer to the function f as the size of the kernel.

Note: We do not formally require that k′ ≤ k, but this will be the case for many kernelizations.

VC-preprocess is a quadratic kernelization

Theorem 7. VC-preprocess is a O(k2) kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?

Exercise
A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such that NG[S] = V .

Degree-5 Dominating Set
Input: A graph G = (V,E) with maximum degree at most 5 and an integer k
Parameter: k
Question: Does G have a dominating set of size at most k?

Design a linear kernel for Degree-5 Dominating Set.
Hint: How many vertices can a Yes-instance have at most, as a function of k?

Solution sketch
Simplification rule: If |V | > 6 · k, then return No.

Exercise

Point Line Cover
Input: A set of points P in the plane R2, and an integer k.
Parameter: k.
Question: Is there a set L of at most k lines in R2 such that each point in P lies on at least one line in L?

Example: (P = {(−1,−2), (0, 0), (1,−1), (1, 1), (1, 2), (1, 3),
(1, 4), (2, 4)}, k = 2) is a Yes-instance since the lines y = 1
and y = 2x cover all the points.

y

x

3



Show that Point Line Cover has a polynomial kernel.

Hints:
(1) Show that the algorithm can restrict its attention to a polynomial number of candidate lines (aim for O(|P |2)).
(2) Design a simplification rule for the case where one candidate line covers many points in P .
(3) Design a simplification rule that solves Point Line Cover when |P | is large compared to t.

Exercise
A cluster graph is a graph where every connected component is a complete graph.

Cluster Editing
Input: Graph G = (V,E), integer k
Parameter: k
Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?

1. Show that G is a cluster graph iff G contains no induced P3 (path with 3 vertices).

2. Design a kernel for Cluster Editing with O(k2) vertices.

Hints for 2: design simplification rules for (1) a vertex that does not occur in any P3, (2) an edge that occurs in
many P3s, and (3) a non-edge that occurs in many P3s

3 A smaller kernel for Vertex Cover

Integer Linear Program for Vertex Cover
The Vertex Cover problem can be written as an Integer Linear Program (ILP). For an instance (G = (V,E), k)

for Vertex Cover with V = {v1, . . . , vn}, create a variable xi for each vertex vi, 1 ≤ i ≤ n. Let X = {x1, . . . , xn}.

ILPVC(G)=
Minimize

n∑
i=1

xi

xi + xj ≥ 1 for each {vi, vj} ∈ E
xi ∈ {0, 1} for each i ∈ {1, . . . , n}

Then, (G, k) is a Yes-instance iff the objective value of ILPVC(G) is at most k.

LP relaxation for Vertex Cover

LPVC(G)=
Minimize

n∑
i=1

xi

xi + xj ≥ 1 for each {vi, vj} ∈ E
xi ≥ 0 for each i ∈ {1, . . . , n}

Note: the value of an optimal solution for the Linear Program LPVC(G) is at most the value of an optimal solution
for ILPVC(G)
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Properties of LP optimal solution

• Let α : X → R≥0 be an optimal solution for LPVC(G). Let

V− = {vi : α(xi) < 1/2}
V1/2 = {vi : α(xi) = 1/2}
V+ = {vi : α(xi) > 1/2}

Lemma 8. For each i, 1 ≤ i ≤ n, we have that α(xi) ≤ 1.

Lemma 9. V− is an independent set.

Lemma 10. NG(V−) = V+.

Lemma 11. For each S ⊆ V+ we have that |S| ≤ |NG(S) ∩ V−|.
Proof. For the sake of contradiction, suppose there is a set S ⊆ V+ such that |S| > |NG(S) ∩ V−|. Let ε =
minvi∈S{α(xi)− 1/2} and α′ : X → R≥0 s.t.

α′(xi) =


α(xi) if vi /∈ S ∪ (NG(S) ∩ V−)

α(xi)− ε if vi ∈ S
α(xi) + ε if vi ∈ NG(S) ∩ V−

Note that α′ is an improved solution for LPVC(G), contradicting that α is optimal.

Theorem 12 (Hall’s marriage theorem). A bipartite graph G = (V ] U,E) has a matching saturating S ⊆ V if
and only if for every subset W ⊆ S we have |W | ≤ |NG(W )|. 1

Consider the bipartite graph B = (V− ] V+, {{u, v} ∈ E : u ∈ V−, v ∈ V+}).
Lemma 13. There exists a matching M in B of size |V+|.
Proof. The lemma follows from the previous lemma and Hall’s marriage theorem.

Crown Decomposition: Definition

Definition 14 (Crown Decomposition). A crown decomposition (C,H,B) of a graph G = (V,E) is a partition of
V into sets C,H, and B such that

• the crown C is a non-empty independent set,

• the head H = NG(C),

• the body B = V \ (C ∪H), and

• there is a matching of size |H| in G[H ∪ C].

By the previous lemmas, we obtain a crown decomposition (V−, V+, V1/2) of G if V− 6= ∅.

Crown Decomposition: Examples

a

b
c

d

e f g

crown decomposition

({a, e, g}, {b, d, f}, {c})

a

b
c

d

e

has no crown decomposition

1A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of
vertices S if each vertex in S is an end point of an edge in M .
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Using the crown decomposition

Lemma 15. Suppose that G = (V,E) has a crown decomposition (C,H,B). Then,

vc(G) ≤ k ⇔ vc(G[B]) ≤ k − |H|,

where vc(G) denotes the size of the smallest vertex cover of G.

Proof. (⇒): Let S be a vertex cover of G with |S| ≤ k. Since S contains at least one vertex for each edge of a
matching, |S ∩ (C ∪H)| ≥ |H|. Therefore, S ∩B is a vertex cover for G[B] of size at most k − |H|.

(⇐): Let S be a vertex cover of G[B] with |S| ≤ k − |H|. Then, S ∪H is a vertex cover of G of size at most k,
since each edge that is in G but not in G′ is incident to a vertex in H.

Nemhauser-Trotter

Corollary 16 ([Nemhauser, Trotter, 1974]). There exists a smallest vertex cover S of G such that S ∩ V− = ∅ and
V+ ⊆ S.

Crown reduction

(Crown Reduction)
If solving LPV C(G) gives an optimal solution with V− 6= ∅, then return (G− (V− ∪ V+), k − |V+|).

(Number of Vertices)
If solving LPV C(G) gives an optimal solution with V− = ∅ and |V | > 2k, then return No.

Lemma 17. (Crown Reduction) and (Number of Vertices) are sound.

Proof. (Crown Reduction) is sound by previous Lemmas. Let α be an optimal solution for LPV C(G) and suppose
V− = ∅. The value of this solution is at least |V |/2. Thus, the value of an optimal solution for ILPVC(G) is at least
|V |/2. Since G has no vertex cover of size less than |V |/2, we have a No-instance if k < |V |/2.

Linear vertex-kernel for Vertex Cover

Theorem 18. Vertex Cover has a kernel with 2k vertices and O(k2) edges.

This is the smallest known kernel for Vertex Cover. See http://fpt.wikidot.com/fpt-races for the current
smallest kernels for various problems.

4 More on Crown Decompositions

Crown Lemma

Lemma 19 (Crown Lemma). Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1. There is
a polynomial time algorithm that either

• finds a matching of size k + 1 in G, or

• finds a crown decomposition of G.

To prove the lemma, we need Kőnig’s Theorem

Theorem 20 ([Kőnig, 1916]). In every bipartite graph the size of a maximum matching is equal to the size of a
minimum vertex cover.

Proof of the Crown Lemma. Compute a maximum matching M of G. If |M | ≥ k + 1, we are done. Note that
I := V \V (M) is an independent set with |V |−|V (M)| ≥ k+1 vertices. Consider the bipartite graph B formed by
edges with one endpoint in V (M) and the other in I. Compute a minimum vertex coverX and a maximum matching
M ′ of B. We know: |X| = |M ′| ≤ |M | ≤ k. Hence, X ∩ V (M) 6= ∅. Let M∗ = {e ∈ M ′ : e ∩ (X ∩ V (M)) 6= ∅}.
We obtain a crown decomposition with

• crown C = V (M∗) ∩ I

• head H = X ∩ V (M) = X ∩ V (M∗), and

• body B = V \ (C ∪H).

As an exercise, verify that (C,H,B) is indeed a crown decomposition.
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Exercise
A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} such that f(u) 6= f(v) if uv ∈ E.

Saving Colors
Input: Graph G, integer k
Parameter: k
Question: Does G have a (n− k)-coloring?

Design a kernel for Saving Colors with O(k) vertices.

Hint: Get rid of vertices v with NG[v] = V and consider the dual of G, i.e., the graph G = (V, {uv : u, v ∈
V and uv /∈ E}). Use the Crown Lemma with G and k − 1.

5 Kernels and Fixed-parameter tractability

Theorem 21. Let Π be a decidable parameterized problem. Π has a kernelization algorithm ⇔ Π is FPT.

Proof. (⇒): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm
on the resulting instance.

(⇐): Let A be an FPT algorithm for Π with running time O(f(k)nc). If f(k) < n, then A has running time
O(nc+1). In this case, the kernelization algorithm runs A and returns a trivial Yes- or No-instance depending on
the answer of A. Otherwise, f(k) ≥ n. In this case, the kernelization algorithm outputs the input instance.

After computing a kernel ...

• ... we can use any algorithm to compute an actual solution.

• Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algo-
rithms

Kernels

• A parameterized problem may not have a kernelization algorithm

– Example, Coloring2 parameterized by k has no kernelization algorithm unless P = NP.

– A kernelization would lead to a polynomial time algorithm for the NP-complete 3-Coloring problem

• Kernelization algorithms lead to FPT algorithms ...

• ... FPT algorithms lead to kernels

Exercise
An edge clique cover of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these
cliques.

Edge Clique Cover

Input: graph G, integer k
Parameter: k
Question: Does G have an edge clique cover with k cliques?

Design a kernel for Edge Clique Cover with O(2k) vertices.

Hint: consider 2 vertices that are contained in exactly the same cliques.

2Can one color the vertices of an input graph G with k colors such that no two adjacent vertices receive the same color?
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6 Further Reading

• Chapter 2, Kernelization in Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

• Chapter 4, Kernelization in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

• Chapter 7, Data Reduction and Problem Kernels in Rolf Niedermeier. Invitation to Fixed Parameter Algo-
rithms. Oxford University Press, 2006.

• Chapter 9, Kernelization and Linear Programming Techniques in Jörg Flum and Martin Grohe. Parameterized
Complexity Theory. Springer, 2006.
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