6. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1	Vertex Cover 1.1 Simplification rules	
2	Kernelization algorithms	3
3	A smaller kernel for Vertex Cover	4
4	More on Crown Decompositions	6
5	Kernels and Fixed-parameter tractability	7
6	Further Reading	8

1 Vertex Cover

A vertex cover of a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that for each edge $\{u, v\} \in E$, we have $u \in S$ or $v \in S$.

Vertex Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size at most k?

1.1 Simplification rules

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is *sound* if for any instance, it produces an equivalent instance. Two instances I, I' are *equivalent* if they are both YES-instances or they are both NO-instances.

Lemma 1. (Degree-0) is sound.

Proof. First, suppose (G - v, k) is a YES-instance. Let S be a vertex cover for G - v of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a YES-instance.

Now, suppose (G, k) is a YES-instance. For the sake of contradiction, assume (G - v, k) is a No-instance. Let S be a vertex cover for G of size at most k. But then, $S \setminus \{v\}$ is a vertex cover of size at most k for G - v; a contradiction.

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u,v\}$ is a vertex cover of $G - N_G[v]$ of size at most k-1, because $u \in S$ or $v \in S$. If S' is a vertex cover of $G - N_G[v]$ of size at most k-1, then $S' \cup \{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G - N_G[v]$ are incident to v.

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \leq k$.

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

Lemma 4. (Number of Edges) is sound.

Proof. Assume $d_G(v) \le k$ for each $v \in V$ and $|E| > k^2$. Suppose $S \subseteq V$, $|S| \le k$, is a vertex cover of G. We have that S covers at most k^2 edges. However, $|E| \ge k^2 + 1$. Thus, S is not a vertex cover of G.

1.2 Preprocessing algorithm

VC-preprocess

Input: A graph G and an integer k.

Output: A graph G' and an integer k' such that G has a vertex cover of size at most k if and only if G' has a vertex cover of size at most k'.

 $G' \leftarrow G$ $k' \leftarrow k$

repeat

| Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k') until no simplification rule applies

return (G', k')

Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

- Say that a preprocessing algorithm for a problem Π is *nice* if it runs in polynomial time and for each instance for Π , it returns an instance for Π that is strictly smaller.
- \bullet \to executing it a linear number of times reduces the instance to a single bit
- \rightarrow such an algorithm would solve Π in polynomial time
- For NP-hard problems this is not possible unless P = NP
- We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 5. For any instance (G, k) for Vertex Cover, VC-preprocess produces an equivalent instance (G', k') of size $O(k^2)$.

Proof. Since all simplification rules are sound, (G = (V, E), k) and (G' = (V', E'), k') are equivalent. By (Number of Edges), $|E'| \le (k')^2 \le k^2$. By (Degree-0) and (Degree-1), each vertex in V' has degree at least 2 in G'. Since $\sum_{v \in V'} d_{G'}(v) = 2|E'| \le 2k^2$, this implies that $|V'| \le k^2$. Thus, $|V'| + |E'| \subseteq O(k^2)$.

2 Kernelization algorithms

Kernelization: definition

Definition 6. A kernelization for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.

VC-preprocess is a quadratic kernelization

Theorem 7. VC-preprocess is a $O(k^2)$ kernelization for VERTEX COVER.

Can we obtain a kernel with fewer vertices?

Exercise

A dominating set of a graph G = (V, E) is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

Degree-5 Dominating Set

Input: A graph G = (V, E) with maximum degree at most 5 and an integer k

Parameter: k

Question: Does G have a dominating set of size at most k?

Design a linear kernel for Degree-5 Dominating Set.

Hint: How many vertices can a YES-instance have at most, as a function of k?

Solution sketch

Simplification rule: If $|V| > 6 \cdot k$, then return No.

Exercise

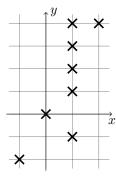
POINT LINE COVER

Input: A set of points P in the plane \mathbb{R}^2 , and an integer k.

Parameter: k

Question: Is there a set L of at most k lines in \mathbb{R}^2 such that each point in P lies on at least one line in L?

Example: $(P = \{(-1, -2), (0, 0), (1, -1), (1, 1), (1, 2), (1, 3), (1, 4), (2, 4)\}, k = 2)$ is a YES-instance since the lines y = 1 and y = 2x cover all the points.



Show that Point Line Cover has a polynomial kernel.

Hints:

- (1) Show that the algorithm can restrict its attention to a polynomial number of candidate lines (aim for $O(|P|^2)$).
- (2) Design a simplification rule for the case where one candidate line covers many points in P.
- (3) Design a simplification rule that solves Point Line Cover when |P| is large compared to t.

Exercise

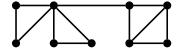
A cluster graph is a graph where every connected component is a complete graph.

CLUSTER EDITING

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?





- 1. Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).
- 2. Design a kernel for Cluster Editing with $O(k^2)$ vertices.

Hints for 2: design simplification rules for (1) a vertex that does not occur in any P_3 , (2) an edge that occurs in many P_3 s, and (3) a non-edge that occurs in many P_3 s

3 A smaller kernel for Vertex Cover

Integer Linear Program for Vertex Cover

The Vertex Cover problem can be written as an Integer Linear Program (ILP). For an instance (G = (V, E), k) for Vertex Cover with $V = \{v_1, \ldots, v_n\}$, create a variable x_i for each vertex v_i , $1 \le i \le n$. Let $X = \{x_1, \ldots, x_n\}$.

$$\text{ILP}_{\text{VC}}(G) = \begin{cases} & & \text{Minimize} \sum_{i=1}^n x_i \\ & & \\ & x_i + x_j \geq 1 \\ & & x_i \in \{0,1\} \end{cases} & \text{for each } \{v_i, v_j\} \in E \\ & & \text{for each } i \in \{1, \dots, n\} \end{cases}$$

Then, (G, k) is a YES-instance iff the objective value of $ILP_{VC}(G)$ is at most k.

LP relaxation for Vertex Cover

$$\text{LP}_{\text{VC}}(G) = \begin{cases} & & \text{Minimize } \sum_{i=1}^n x_i \\ & & \\ & x_i + x_j \geq 1 \\ & & \text{for each } \{v_i, v_j\} \in E \\ & & \\ & & x_i \geq 0 \end{cases}$$
 for each $i \in \{1, \dots, n\}$

Note: the value of an optimal solution for the Linear Program $LP_{VC}(G)$ is at most the value of an optimal solution for $ILP_{VC}(G)$

Properties of LP optimal solution

• Let $\alpha: X \to \mathbb{R}_{>0}$ be an optimal solution for $LP_{VC}(G)$. Let

$$V_{-} = \{v_i : \alpha(x_i) < 1/2\}$$

$$V_{1/2} = \{v_i : \alpha(x_i) = 1/2\}$$

$$V_{+} = \{v_i : \alpha(x_i) > 1/2\}$$

Lemma 8. For each $i, 1 \le i \le n$, we have that $\alpha(x_i) \le 1$.

Lemma 9. V_{-} is an independent set.

Lemma 10. $N_G(V_-) = V_+$.

Lemma 11. For each $S \subseteq V_+$ we have that $|S| \leq |N_G(S) \cap V_-|$.

Proof. For the sake of contradiction, suppose there is a set $S \subseteq V_+$ such that $|S| > |N_G(S) \cap V_-|$. Let $\epsilon = \min_{v_i \in S} \{\alpha(x_i) - 1/2\}$ and $\alpha' : X \to \mathbb{R}_{\geq 0}$ s.t.

$$\alpha'(x_i) = \begin{cases} \alpha(x_i) & \text{if } v_i \notin S \cup (N_G(S) \cap V_-) \\ \alpha(x_i) - \epsilon & \text{if } v_i \in S \\ \alpha(x_i) + \epsilon & \text{if } v_i \in N_G(S) \cap V_- \end{cases}$$

Note that α' is an improved solution for $LP_{VC}(G)$, contradicting that α is optimal.

Theorem 12 (Hall's marriage theorem). A bipartite graph $G = (V \uplus U, E)$ has a matching saturating $S \subseteq V$ if and only if for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$.

Consider the bipartite graph $B = (V_- \uplus V_+, \{\{u, v\} \in E : u \in V_-, v \in V_+\}).$

Lemma 13. There exists a matching M in B of size $|V_+|$.

Proof. The lemma follows from the previous lemma and Hall's marriage theorem.

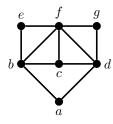
Crown Decomposition: Definition

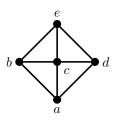
Definition 14 (Crown Decomposition). A crown decomposition (C, H, B) of a graph G = (V, E) is a partition of V into sets C, H, and B such that

- \bullet the crown C is a non-empty independent set,
- the head $H = N_G(C)$,
- the body $B = V \setminus (C \cup H)$, and
- there is a matching of size |H| in $G[H \cup C]$.

By the previous lemmas, we obtain a crown decomposition $(V_-, V_+, V_{1/2})$ of G if $V_- \neq \emptyset$.

Crown Decomposition: Examples





crown decomposition $(\{a, e, g\}, \{b, d, f\}, \{c\})$

has no crown decomposition

¹A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M.

Using the crown decomposition

Lemma 15. Suppose that G = (V, E) has a crown decomposition (C, H, B). Then,

$$vc(G) \le k \quad \Leftrightarrow \quad vc(G[B]) \le k - |H|,$$

where vc(G) denotes the size of the smallest vertex cover of G.

Proof. (\Rightarrow): Let S be a vertex cover of G with $|S| \leq k$. Since S contains at least one vertex for each edge of a matching, $|S \cap (C \cup H)| \geq |H|$. Therefore, $S \cap B$ is a vertex cover for G[B] of size at most k - |H|.

(\Leftarrow): Let S be a vertex cover of G[B] with $|S| \le k - |H|$. Then, $S \cup H$ is a vertex cover of G of size at most k, since each edge that is in G but not in G' is incident to a vertex in H. □

Nemhauser-Trotter

Corollary 16 ([Nemhauser, Trotter, 1974]). There exists a smallest vertex cover S of G such that $S \cap V_{-} = \emptyset$ and $V_{+} \subseteq S$.

Crown reduction

(Crown Reduction)

If solving $LP_{VC}(G)$ gives an optimal solution with $V_- \neq \emptyset$, then return $(G - (V_- \cup V_+), k - |V_+|)$.

(Number of Vertices)

If solving $LP_{VC}(G)$ gives an optimal solution with $V_{-} = \emptyset$ and |V| > 2k, then return No.

Lemma 17. (Crown Reduction) and (Number of Vertices) are sound.

Proof. (Crown Reduction) is sound by previous Lemmas. Let α be an optimal solution for $LP_{VC}(G)$ and suppose $V_{-} = \emptyset$. The value of this solution is at least |V|/2. Thus, the value of an optimal solution for $LP_{VC}(G)$ is at least |V|/2. Since G has no vertex cover of size less than |V|/2, we have a No-instance if k < |V|/2.

Linear vertex-kernel for Vertex Cover

Theorem 18. Vertex Cover has a kernel with 2k vertices and $O(k^2)$ edges.

This is the smallest known kernel for VERTEX COVER. See http://fpt.wikidot.com/fpt-races for the current smallest kernels for various problems.

4 More on Crown Decompositions

Crown Lemma

Lemma 19 (Crown Lemma). Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

To prove the lemma, we need Kőnig's Theorem

Theorem 20 ([Kőnig, 1916]). In every bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover.

Proof of the Crown Lemma. Compute a maximum matching M of G. If $|M| \ge k+1$, we are done. Note that $I := V \setminus V(M)$ is an independent set with $|V| - |V(M)| \ge k+1$ vertices. Consider the bipartite graph B formed by edges with one endpoint in V(M) and the other in I. Compute a minimum vertex cover X and a maximum matching M' of B. We know: $|X| = |M'| \le |M| \le k$. Hence, $X \cap V(M) \ne \emptyset$. Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \ne \emptyset\}$. We obtain a crown decomposition with

- crown $C = V(M^*) \cap I$
- head $H = X \cap V(M) = X \cap V(M^*)$, and
- body $B = V \setminus (C \cup H)$.

As an exercise, verify that (C, H, B) is indeed a crown decomposition.

Exercise

A k-coloring of a graph G = (V, E) is a function $f: V \to \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

SAVING COLORS

Input: Graph G, integer k

Parameter: k

Question: Does G have a (n-k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices.

Hint: Get rid of vertices v with $N_G[v] = V$ and consider the dual of G, i.e., the graph $\overline{G} = (V, \{uv : u, v \in V \text{ and } uv \notin E\})$. Use the Crown Lemma with \overline{G} and k-1.

5 Kernels and Fixed-parameter tractability

Theorem 21. Let Π be a decidable parameterized problem. Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Proof. (\Rightarrow): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

(\Leftarrow): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$. If f(k) < n, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial YES- or No-instance depending on the answer of A. Otherwise, $f(k) \ge n$. In this case, the kernelization algorithm outputs the input instance.

After computing a kernel ...

- ... we can use any algorithm to compute an actual solution.
- Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algorithms

Kernels

- A parameterized problem may not have a kernelization algorithm
 - Example, Coloring parameterized by k has no kernelization algorithm unless P = NP.
 - A kernelization would lead to a polynomial time algorithm for the NP-complete 3-Coloring problem
- \bullet Kernelization algorithms lead to FPT algorithms \dots
- ... FPT algorithms lead to kernels

Exercise

An edge clique cover of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these cliques.

EDGE CLIQUE COVER

Input: graph G, integer k

Parameter: k

Question: Does G have an edge clique cover with k cliques?

Design a kernel for EDGE CLIQUE COVER with $O(2^k)$ vertices.

Hint: consider 2 vertices that are contained in exactly the same cliques.

²Can one color the vertices of an input graph G with k colors such that no two adjacent vertices receive the same color?

6 Further Reading

- Chapter 2, Kernelization in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 4, *Kernelization* in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter 7, Data Reduction and Problem Kernels in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Chapter 9, Kernelization and Linear Programming Techniques in Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.