Solution to COMP9334 Revision Questions for Week 2 — Part 2

Question on Poisson Process

In order to refer to the two Poisson processes in a convenient way, I call them P_1 and P_2 . The Poisson processes P_1 and P_2 , have rates r_1 and r_2 , respectively.

Consider a time interval T. Since P_1 is a Poisson process with rate r_1 , we know that the probability that there are k arrivals in time interval T is

$$\frac{e^{-r_1 T} (r_1 T)^k}{k!} \tag{1}$$

Similarly, the probability that there are j arrivals in time interval T from P_2 is

$$\frac{e^{-r_2T}(r_2T)^j}{j!}$$
(2)

Let us consider the aggregation of the two Poisson processes P_1 and P_2 over the time interval T. The arrivals can come from P_1 or P_2 . Let us find the probability that there are narrivals in T. If there are n arrivals from P_1 and P_2 together, this can be resulted from

- 0 arrivals from P_1 and n arrivals from P_2
- 1 arrivals from P_1 and (n-1) arrivals from P_2
- 2 arrivals from P_1 and (n-2) arrivals from P_2 ...
- (n-1) arrivals from P_1 and 1 arrivals from P_2
- n arrivals from P_1 and 0 arrivals from P_2

Therefore

Probability that there are n arrivals over time T from P_1 and P_2 together

= $\sum_{i=0}^{n}$ Probability of *i* arrivals over time *T* from $P_1 \times$ Probability of (n-i) arrivals over time *T* from P_2

$$= \sum_{i=0}^{n} \frac{e^{-r_{1}T} (r_{1}T)^{i}}{i!} \frac{e^{-r_{2}T} (r_{2}T)^{n-i}}{(n-i)!}$$

$$= \frac{1}{n!} e^{-(r_{1}+r_{2})T} \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} (r_{1}T)^{i} (r_{2}T)^{(n-i)}$$

$$= \frac{1}{n!} e^{-(r_{1}+r_{2})T} ((r_{1}+r_{2})T)^{n}$$

This shows that the aggregation of P_1 and P_2 is a Poisson process with rate $r_1 + r_2$.