Solution to COMP9334 Revision Questions for Week 2 - Part 2

Question on Poisson Process

In order to refer to the two Poisson processes in a convenient way, I call them P_{1} and P_{2}. The Poisson processes P_{1} and P_{2}, have rates r_{1} and r_{2}, respectively.

Consider a time interval T. Since P_{1} is a Poisson process with rate r_{1}, we know that the probability that there are k arrivals in time interval T is

$$
\begin{equation*}
\frac{e^{-r_{1} T}\left(r_{1} T\right)^{k}}{k!} \tag{1}
\end{equation*}
$$

Similarly, the probability that there are j arrivals in time interval T from P_{2} is

$$
\begin{equation*}
\frac{e^{-r_{2} T}\left(r_{2} T\right)^{j}}{j!} \tag{2}
\end{equation*}
$$

Let us consider the aggregation of the two Poisson processes P_{1} and P_{2} over the time interval T. The arrivals can come from P_{1} or P_{2}. Let us find the probability that there are n arrivals in T. If there are n arrivals from P_{1} and P_{2} together, this can be resulted from

- 0 arrivals from P_{1} and n arrivals from P_{2}
- 1 arrivals from P_{1} and $(n-1)$ arrivals from P_{2}
- 2 arrivals from P_{1} and $(n-2)$ arrivals from P_{2}
- $(n-1)$ arrivals from P_{1} and 1 arrivals from P_{2}
- n arrivals from P_{1} and 0 arrivals from P_{2}

Therefore
Probability that there are n arrivals over time T from P_{1} and P_{2} together
$=\sum_{i=0}^{n}$ Probability of i arrivals over time T from $P_{1} \times$ Probability of $(n-i)$ arrivals over time T from P_{2}
$=\sum_{i=0}^{n} \frac{e^{-r_{1} T}\left(r_{1} T\right)^{i}}{i!} \frac{e^{-r_{2} T}\left(r_{2} T\right)^{n-i}}{(n-i)!}$
$=\frac{1}{n!} e^{-\left(r_{1}+r_{2}\right) T} \sum_{i=0}^{n} \frac{n!}{i!(n-i)!}\left(r_{1} T\right)^{i}\left(r_{2} T\right)^{(n-i)}$
$=\frac{1}{n!} e^{-\left(r_{1}+r_{2}\right) T}\left(\left(r_{1}+r_{2}\right) T\right)^{n}$
This shows that the aggregation of P_{1} and P_{2} is a Poisson process with rate $r_{1}+r_{2}$.

