5. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Sydney, Australia
2Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2017
Outline

1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Outline

1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
A vertex cover of a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that for each edge $\{u, v\} \in E$, we have $u \in S$ or $v \in S$.

Vertex Cover

Input: A graph $G = (V, E)$ and an integer k

Parameter: k

Question: Does G have a vertex cover of size at most k?
Exercise 1

Is this a \textbf{Yes}-instance for \textsc{Vertex Cover}?
(Is there $S \subseteq V$ with $|S| \leq 4$, such that $\forall uv \in E$, $u \in S$ or $v \in S$?)
Exercise 2

\[k = 7 \]
Outline

1. **Vertex Cover**
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for **Vertex Cover**

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Simplification rules for Vertex Cover

(Degree-0)

If \(\exists v \in V \) such that \(d_G(v) = 0 \), then set \(G \leftarrow G - v \).
Simplification rules for Vertex Cover

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for any instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both Yes-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.
Simplification rules for \textbf{Vertex Cover}

\textbf{(Degree-0)}

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

\textbf{Proving correctness.} A simplification rule is \textbf{sound} if for any instance, it produces an equivalent instance. Two instances I, I' are \textbf{equivalent} if they are both \textbf{Yes}-instances or they are both \textbf{No}-instances.

\textbf{Lemma 1}

\textit{(Degree-0) is sound.}

\textbf{Proof.}

First, suppose $(G - v, k)$ is a \textbf{Yes}-instance. Let S be a vertex cover for $G - v$ of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a \textbf{Yes}-instance.

Now, suppose (G, k) is a \textbf{Yes}-instance. For the sake of contradiction, assume $(G - v, k)$ is a \textbf{No}-instance. Let S be a vertex cover for G of size at most k. But then, $S \setminus \{v\}$ is a vertex cover of size at most k for $G - v$; a contradiction. \qed
Simplification rules for Vertex Cover

(Degree-1)

If \(\exists v \in V \) such that \(d_G(v) = 1 \), then set \(G \leftarrow G - N_G[v] \) and \(k \leftarrow k - 1 \).
Simplification rules for **Vertex Cover**

(Degree-1)

If \(\exists v \in V \) such that \(d_G(v) = 1 \), then set \(G \leftarrow G - N_G[v] \) and \(k \leftarrow k - 1 \).

Lemma 1

(Degree-1) is sound.

Proof.

Let \(u \) be the neighbor of \(v \) in \(G \). Thus, \(N_G[v] = \{u, v\} \).

If \(S \) is a vertex cover of \(G \) of size at most \(k \), then \(S \setminus \{u, v\} \) is a vertex cover of \(G - N_G[v] \) of size at most \(k - 1 \), because \(u \in S \) or \(v \in S \).

If \(S' \) is a vertex cover of \(G - N_G[v] \) of size at most \(k - 1 \), then \(S' \cup \{u\} \) is a vertex cover of \(G \) of size at most \(k \), since all edges that are in \(G \) but not in \(G - N_G[v] \) are incident to \(v \). \(\square \)
Simplification rules for Vertex Cover

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 1 (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If $v \not\in S$, then $N_G(v) \subseteq S$, contradicting that $|S| \leq k$.

S. Gaspers (UNSW)
Simplification rules for **Vertex Cover**

(Large Degree)

If \(\exists v \in V \) such that \(d_G(v) > k \), then set \(G \leftarrow G - v \) and \(k \leftarrow k - 1 \).

Lemma 1

(Large Degree) is sound.

Proof.

Let \(S \) be a vertex cover of \(G \) of size at most \(k \). If \(v \notin S \), then \(N_G(v) \subseteq S \), contradicting that \(|S| \leq k \). □
If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No.
Simplification rules for Vertex Cover

(Number of Edges)

If \(d_G(v) \leq k \) for each \(v \in V \) and \(|E| > k^2 \) then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume \(d_G(v) \leq k \) for each \(v \in V \) and \(|E| > k^2 \).
Suppose \(S \subseteq V, |S| \leq k \), is a vertex cover of \(G \).
We have that \(S \) covers at most \(k^2 \) edges.
However, \(|E| \geq k^2 + 1 \).
Thus, \(S \) is not a vertex cover of \(G \).
Outline

1. **Vertex Cover**
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for **Vertex Cover**

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Preprocessing algorithm for **Vertex Cover**

VC-preprocess

Input: A graph G and an integer k.

Output: A graph G' and an integer k' such that G has a vertex cover of size at most k if and only if G' has a vertex cover of size at most k'.

$G' \leftarrow G$

$k' \leftarrow k$

repeat

execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k')

until no simplification rule applies

return (G', k')
Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.
Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance for Π, it returns an instance for Π that is strictly smaller.
Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance for Π, it returns an instance for Π that is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit

→ such an algorithm would solve Π in polynomial time

For NP-hard problems this is not possible unless $P = NP$

We need a different measure of effectiveness
Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?
Lemma 2

For any instance \((G, k)\) for Vertex Cover, VC-preprocess produces an equivalent instance \((G', k')\) of size \(O(k^2)\).

Proof.

Since all simplification rules are sound, \((G = (V, E), k)\) and \((G' = (V', E'), k')\) are equivalent.

By (Number of Edges), \(|E'| \leq (k')^2 \leq k^2\).

By (Degree-0) and (Degree-1), each vertex in \(V'\) has degree at least 2 in \(G'\).

Since \(\sum_{v \in V'} d_{G'}(v) = 2|E'| \leq 2k^2\), this implies that \(|V'| \leq k^2\).

Thus, \(|V'| + |E'| \subseteq O(k^2)\).
Outline

1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Definition 3

A kernelization for a parameterized problem Π is a polynomial time algorithm, which, for any instance I of Π with parameter k, produces an equivalent instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f.

We refer to the function f as the size of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.
VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a $O(k^2)$ kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?
Outline

1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
The **Vertex Cover** problem can be written as an Integer Linear Program (ILP). For an instance \((G = (V, E), k)\) for **Vertex Cover** with \(V = \{v_1, \ldots, v_n\}\), create a variable \(x_i\) for each vertex \(v_i, 1 \leq i \leq n\). Let \(X = \{x_1, \ldots, x_n\}\).

\[
\text{ILP}_{VC}(G) = \begin{align*}
\text{Minimize} & \quad \sum_{i=1}^{n} x_i \\
\text{subject to} & \quad x_i + x_j \geq 1 \quad \text{for each} \quad \{v_i, v_j\} \in E \\
& \quad x_i \in \{0, 1\} \quad \text{for each} \quad i \in \{1, \ldots, n\}
\end{align*}
\]

Then, \((G, k)\) is a **Yes**-instance iff the objective value of \(\text{ILP}_{VC}(G)\) is at most \(k\).
LP relaxation for Vertex Cover

LP_{VC}(G) =

Minimize \sum_{i=1}^{n} x_i

x_i + x_j \geq 1 \quad \text{for each } \{v_i, v_j\} \in E

x_i \geq 0 \quad \text{for each } i \in \{1, \ldots, n\}

Note: the value of an optimal solution for the Linear Program LP_{VC}(G) is at most the value of an optimal solution for ILP_{VC}(G)
Properties of LP optimal solution

1. Let \(\alpha : X \rightarrow \mathbb{R}_{\geq 0} \) be an optimal solution for \(\text{LP}_{\text{VC}}(G') \). Let

 \[
 V_- = \{ v_i : \alpha(x_i) < 1/2 \} \\
 V_{1/2} = \{ v_i : \alpha(x_i) = 1/2 \} \\
 V_+ = \{ v_i : \alpha(x_i) > 1/2 \}
 \]
Properties of LP optimal solution

Let \(\alpha : X \to \mathbb{R}_{\geq 0} \) be an optimal solution for LP\(_{VC}(G')\). Let

\[
\begin{align*}
V_- &= \{ v_i : \alpha(x_i) < 1/2 \} \\
V_{1/2} &= \{ v_i : \alpha(x_i) = 1/2 \} \\
V_+ &= \{ v_i : \alpha(x_i) > 1/2 \}
\end{align*}
\]

Lemma 5

For each \(i, 1 \leq i \leq n \), we have that \(\alpha(x_i) \leq 1 \).

Lemma 6

\(V_- \) is an independent set.

Lemma 7

\(N_G(V_-) = V_+ \).
Lemma 8

For each $S \subseteq V_+$ we have that $|S| \leq |N_G(S) \cap V_-|$.

Proof.

For the sake of contradiction, suppose there is a set $S \subseteq V_+$ such that $|S| > |N_G(S) \cap V_-|$. Let $\epsilon = \min_{v_i \in S} \{\alpha(x_i) - 1/2\}$ and $\alpha' : X \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$
\alpha'(x_i) = \begin{cases}
\alpha(x_i) & \text{if } v_i \notin S \cup (N_G(S) \cap V_-) \\
\alpha(x_i) - \epsilon & \text{if } v_i \in S \\
\alpha(x_i) + \epsilon & \text{if } v_i \in N_G(S) \cap V_-
\end{cases}
$$

Note that α' is an improved solution for $\text{LP}_{\text{VC}}(G)$, contradicting that α is optimal.
Theorem 9 (Hall’s marriage theorem)

A bipartite graph $G = (V \uplus U, E)$ has a matching saturating $S \subseteq V$

\[\iff\]

for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$. \(^1\)

\(^1\)A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M.
Properties of LP optimal solution III

Theorem 9 (Hall’s marriage theorem)

A bipartite graph $G = (V \cup U, E)$ has a matching saturating $S \subseteq V$ if and only if for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$. ¹

Consider the bipartite graph $B = (V_- \cup V_+, \{\{u, v\} \in E : u \in V_-, v \in V_+\})$.

Lemma 10

There exists a matching M in B of size $|V_+|$. ²

Proof.

The lemma follows from the previous lemma and Hall’s marriage theorem. ²

¹A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M. ²
Definition 11 (Crown Decomposition)

A crown decomposition \((C, H, B)\) of a graph \(G = (V, E)\) is a partition of \(V\) into sets \(C, H,\) and \(B\) such that

- the crown \(C\) is a non-empty independent set,
- the head \(H = N_G(C)\),
- the body \(B = V \setminus (C \cup H)\), and
- there is a matching of size \(|H|\) in \(G[H \cup C]\).

By the previous lemmas, we obtain a crown decomposition \((V_-, V_+, V_{1/2})\) of \(G\) if \(V_- \neq \emptyset\).
Crown Decomposition: Examples

\[a \quad b \quad c \quad d \quad e \quad f \quad g \]

\[b \quad c \quad d \quad a \]

\[e \quad c \quad d \quad a \]

S. Gaspers (UNSW)
Crown Decomposition: Examples

crown decomposition

\((\{a, e, g\}, \{b, d, f\}, \{c\})\)

has no crown decomposition

S. Gaspers (UNSW)
Lemma 12

Suppose that $G = (V, E)$ has a crown decomposition (C, H, B). Then,

$$vc(G) \leq k \iff vc(G[B]) \leq k - |H|,$$

where $vc(G)$ denotes the size of the smallest vertex cover of G.

Lemma 12

Suppose that \(G = (V, E) \) has a crown decomposition \((C, H, B)\). Then,

\[
vc(G) \leq k \iff vc(G[B]) \leq k - |H|,
\]

where \(vc(G) \) denotes the size of the smallest vertex cover of \(G \).

Proof.

\((\Rightarrow)\): Let \(S \) be a vertex cover of \(G \) with \(|S| \leq k\). Since \(S \) contains at least one vertex for each edge of a matching, \(|S \cap (C \cup H)| \geq |H|\). Therefore, \(S \cap B \) is a vertex cover for \(G[B] \) of size at most \(k - |H| \).

\((\Leftarrow)\): Let \(S \) be a vertex cover of \(G[B] \) with \(|S| \leq k - |H|\). Then, \(S \cup H \) is a vertex cover of \(G \) of size at most \(k \), since each edge that is in \(G \) but not in \(G' \) is incident to a vertex in \(H \).

\(\square\)
Corollary 13 ([Nemhauser, Trotter, 1974])

There exists a smallest vertex cover S of G such that $S \cap V_- = \emptyset$ and $V_+ \subseteq S$.
Crown reduction

(Crown Reduction)

If solving \(\text{LP}_{V_C}(G) \) gives an optimal solution with \(V_- \neq \emptyset \), then return \((G - (V_- \cup V_+), k - |V_+|)\).
Crown reduction

(Crown Reduction)

If solving LP$_{VC}(G)$ gives an optimal solution with $V_- \neq \emptyset$, then return $(G - (V_- \cup V_+), k - |V_+|)$.

(Number of Vertices)

If solving LP$_{VC}(G)$ gives an optimal solution with $V_- = \emptyset$ and $|V| > 2k$, then return No.
Crown reduction

(Crown Reduction)

If solving LP\(_{VC}(G)\) gives an optimal solution with \(V_\neq \emptyset\), then return
\((G - (V_\cup V_+), k - |V_+|)\).

(Number of Vertices)

If solving LP\(_{VC}(G)\) gives an optimal solution with \(V_\neq \emptyset\) and \(|V| > 2k\), then return \text{No}.

Lemma 14

(Crown Reduction) and (Number of Vertices) are sound.

Proof.

(Crown Reduction) is sound by previous Lemmas. Let \(\alpha\) be an optimal solution for LP\(_{VC}(G)\) and suppose \(V_\neq \emptyset\). The value of this solution is at least \(|V|/2\). Thus, the value of an optimal solution for ILP\(_{VC}(G)\) is at least \(|V|/2\). Since \(G\) has no vertex cover of size less than \(|V|/2\), we have a \text{No}-instance if \(k < |V|/2\). \(\square\)
Theorem 15

Vertex Cover has a kernel with $2k$ vertices and $O(k^2)$ edges.

This is the smallest known kernel for **Vertex Cover**.

See http://fpt.wikidot.com/fpt-races for the current smallest kernels for various problems.
Outline

1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Recall:

Definition 16 (Crown Decomposition)

A crown decomposition \((C, H, B)\) of a graph \(G = (V, E)\) is a partition of \(V\) into sets \(C, H,\) and \(B\) such that

- the crown \(C\) is a non-empty independent set,
- the head \(H = N_G(C)\),
- the body \(B = V \setminus (C \cup H)\), and
- there is a matching of size \(|H|\) in \(G[H \cup C]\).
Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.
Crown Lemma

Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

To prove the lemma, we need König’s Theorem

Theorem 18 ([König, 1916])

In every bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover.
Crown Lemma

Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.
Crown Lemma

Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done. Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.
Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done. Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices. Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Lemma 17 (Crown Lemma)

Let \(G = (V, E) \) be a graph without isolated vertices and with \(|V| \geq 3k + 1 \). There is a polynomial time algorithm that either

- finds a matching of size \(k + 1 \) in \(G \), or
- finds a crown decomposition of \(G \).

Proof.

Compute a maximum matching \(M \) of \(G \). If \(|M| \geq k + 1 \), we are done. Note that \(I := V \setminus V(M) \) is an independent set with \(\geq k + 1 \) vertices. Consider the bipartite graph \(B \) formed by edges with one endpoint in \(V(M) \) and the other in \(I \).

Compute a minimum vertex cover \(X \) and a maximum matching \(M' \) of \(B \).
Lemma 17 (Crown Lemma)

Let \(G = (V, E) \) be a graph without isolated vertices and with \(|V| \geq 3k + 1\).
There is a polynomial time algorithm that either

- finds a matching of size \(k + 1 \) in \(G \), or
- finds a crown decomposition of \(G \).

Proof.

Compute a maximum matching \(M \) of \(G \). If \(|M| \geq k + 1\), we are done.
Note that \(I := V \setminus V(M) \) is an independent set with \(\geq k + 1 \) vertices.
Consider the bipartite graph \(B \) formed by edges with one endpoint in \(V(M) \) and
the other in \(I \).

Compute a minimum vertex cover \(X \) and a maximum matching \(M' \) of \(B \).
We know: \(|X| = |M'| \leq |M| \leq k\). Hence, \(X \cap V(M) \neq \emptyset \).
Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \leq |M| \leq k$. Hence, $X \cap V(M) \neq \emptyset$.

Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}$.
Crown Lemma

Lemma 17 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done. Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices. Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B. We know: $|X| = |M'| \leq |M| \leq k$. Hence, $X \cap V(M) \neq \emptyset$.

Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}$. We obtain a crown decomposition with crown $C = V(M^*) \cap I$ and head $H = X \cap V(M) = X \cap V(M^*)$.

\[\square \]
1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Theorem 18

Let Π be a decidable parameterized problem. Π has a kernelization algorithm $\iff \Pi$ is FPT.
Theorem 18

Let Π be a decidable parameterized problem. Π has a kernelization algorithm \iff Π is FPT.

Proof.

(\Rightarrow): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance. (\Leftarrow): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$. If $f(k) < n$, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial Yes- or No-instance depending on the answer of A. Otherwise, $f(k) \geq n$. In this case, the kernelization algorithm outputs the input instance.
After computing a kernel ...

- ... we can use any algorithm to compute an actual solution.
- Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algorithms
A parameterized problem may not have a kernelization algorithm

- Example, \textsc{Coloring}^2 parameterized by \(k \) has no kernelization algorithm unless \(P = NP \).
- A kernelization would lead to a polynomial time algorithm for the \textsc{NP}-complete \textsc{3-Coloring} problem

Kernelization algorithms lead to \textsc{FPT} algorithms ...

... \textsc{FPT} algorithms lead to kernels

\(^2\text{Can one color the vertices of an input graph } G \text{ with } k \text{ colors such that no two adjacent vertices receive the same color?}\)
Outline

1. Vertex Cover
 - Simplification rules
 - Preprocessing algorithm

2. Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Further Reading

