COMP2111 Week 10 Term 1, 2019 Course review

- Reinforce concepts from Discrete Mathematics
- Emphasise the connections between Discrete Mathematics and Computer Science
- Use mathematical concepts to reason about programs:

- Reinforce concepts from Discrete Mathematics
- Emphasise the connections between Discrete Mathematics and Computer Science
- Use mathematical concepts to reason about programs:

- Reinforce concepts from Discrete Mathematics
- Emphasise the connections between Discrete Mathematics and Computer Science
- Use mathematical concepts to reason about programs:
 - Acquire (and understand) languages to formally specify systems
 - Acquire (and understand) structures to formally model systems
 - Learn how to prove that a program satisfies its specification

- Reinforce concepts from Discrete Mathematics
- Emphasise the connections between Discrete Mathematics and Computer Science
- Use mathematical concepts to reason about programs:
 - Acquire (and understand) languages to formally specify systems
 - Acquire (and understand) structures to formally model systems
 - Learn how to prove that a program satisfies its specification

- Reinforce concepts from Discrete Mathematics
- Emphasise the connections between Discrete Mathematics and Computer Science
- Use mathematical concepts to reason about programs:
 - Acquire (and understand) languages to formally specify systems
 - Acquire (and understand) structures to formally model systems

- Reinforce concepts from Discrete Mathematics
- Emphasise the connections between Discrete Mathematics and Computer Science
- Use mathematical concepts to reason about programs:
 - Acquire (and understand) languages to formally specify systems
 - Acquire (and understand) structures to formally model systems
 - Learn how to prove that a program satisfies its specification

Assessment details

- Assignment 1: 20%
- Assignment 2: 15%
- Assignment 3: 15%
- Final exam: 50%

NB

You must achieve 40% on the final exam and 50% overall to pass.

Final exam

Goal: Assess your understanding of the concepts in this course

Requires you to demonstrate:

- Understanding of the topics covered
- Ability to apply these concepts and explain how they work

Lectures, assignments and tutorials have built you up to this point.

Exam details

Wednesday, 15 May, 8:45AM Randwick Racecourse Ballroom

- 5 short answer questions and 5 long answer questions
- Topics taken from all content up to (and including)
 Context-Free Grammars.
- Each short answer question is worth 4 marks
 Each long answer question is worth 20 marks
 Total exam marks = 120 (i.e. 1 mark/minute)
- Time allowed: 120 minutes + 10 minutes reading time
- One handwritten or typed A4-sized sheet (double-sided is ok) of your own notes
- Formula sheet with rules/laws included

Exam structure

Short answer questions:

- Short questions designed to check your understanding of definitions
- 2–3 sentence justifications if necessary
- Answer in exam booklet not on exam paper

Long answer questions:

- "Proof" questions designed to examine your understanding at a deeper level
- Answer in exam booklet: start each question on a new page
- Put the order questions were attempted on the front.

Exam structure

Short answer questions:

- Short questions designed to check your understanding of definitions
- 2-3 sentence justifications if necessary
- Answer in exam booklet not on exam paper

Long answer questions:

- "Proof" questions designed to examine your understanding at a deeper level
- Answer in exam booklet: start each question on a new page
- Put the order questions were attempted on the front.

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Fundamentals

- Sets
- Languages
- Relations and Functions

Need to know for this course:

- Formal language definitions
- Relation/function definitions
- Equivalence relations
- Partial orders

Relation/Function definitions

- Reflexive, anti-reflexive
- Symmetric, anti-symmetric
- Transitive
- Composition, converse, inverse
- Injective, surjective, bijective

Example (Properties)

Example

Common relations and their properties

	(<i>R</i>)	(AR)	(5)	(AS)	(T)
=	√		√	\checkmark	\checkmark
\leq	✓			\checkmark	\checkmark
<		\checkmark		\checkmark	\checkmark
Ø		\checkmark	\checkmark	\checkmark	\checkmark
\mathcal{U}	✓		\checkmark		\checkmark
	✓			\checkmark	\checkmark

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Set Theory and Boolean Algebras

- Sets
- Boolean Algebras

Need to know for this course:

- Proofs using the Laws of Set Operations
- Proofs using the Laws of Boolean Algebras
- Principle of duality

Definition: Boolean Algebra

A Boolean algebra is a structure $(T, \vee, \wedge, ', 0, 1)$ where

- $0.1 \in T$
- $\vee : T \times T \to T$ (called **join**)
- $\wedge : T \times T \to T$ (called **meet**)
- $': T \to T$ (called **complementation**)

and the following laws hold for all $x, y, z \in T$:

commutative: •
$$x \lor y = y \lor x$$

$$\bullet \ \ x \land y = y \land x$$

associative: •
$$(x \lor y) \lor z = x \lor (y \lor z)$$

$$\bullet (x \wedge y) \wedge z = x \wedge (y \wedge z)$$

distributive: •
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

$$\bullet \ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

identity:
$$x \lor 0 = x$$
, $x \land 1 = x$

complementation:
$$x \lor x' = 1$$
, $x \land x' = 0$

Example (Proof using Laws of Set Operations)

Example (Idempotence of \cup)

```
A = A \cup \emptyset \qquad \text{(Identity)}
= A \cup (A \cap A^c) \qquad \text{(Complementation)}
= (A \cup A) \cap (A \cup A^c) \qquad \text{(Distributivity)}
= (A \cup A) \cap \mathcal{U} \qquad \text{(Complementation)}
= (A \cup A) \qquad \text{(Identity)}
```

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Inductive definitions, datatypes, and proofs

- Recursion
- Recursive datatypes and functions
- Induction and structural induction

Need to know for this course:

- How to define structures/functions recursively
- How to prove properties of recursively defined structures

Inductive definitions

Inductively defined structure:

- Base case(s): "Minimal" structures
- Inductive case(s): How to build more complex structures from simple ones

Recursively defined functions:

- Base case(s): Terminating conditions
- Recursive case(s): Call functions with "smaller" inputs

Example (Inductive definitions)

Example (Inductively defined structures)

- Natural numbers:
 - Base case: 0
 - Inductive case: n+1 where n is a Natural number
- Σ*:
 - Base case: λ
 - Inductive case: aw where $a \in \Sigma$ and $w \in \Sigma^*$
- Well-formed formulas
- L programs
- Regular expressions

Example (Inductive definitions)

Example (Recursively defined functions)

- ullet length : $\Sigma^* o \Sigma^*$
 - Base case: length(λ) = 0
 - Inductive case: length(aw) = 1 + length(w)
- \bullet $\llbracket \cdot \rrbracket_{\mathsf{v}} : \mathrm{WFFs} \to \mathbb{B}$
- $\llbracket \cdot \rrbracket^{\eta}_{\mathcal{M}} : \text{WFFs} \to \mathbb{B}$
- $\llbracket \cdot \rrbracket$: Programs \rightarrow Pow(Env \times Env)
- $L(\cdot)$: RegExp \rightarrow Pow(Σ^*)

Structural Induction

Basic induction allows us to assert properties over **all natural numbers**. The induction scheme (layout) uses the recursive definition of \mathbb{N} .

The induction schemes can be applied not only to natural numbers (and integers) but to any partially ordered set in general – especially those defined recursively.

The basic approach is always the same — we need to verify that

- [B] the property holds for all minimal objects objects that have no predecessors; they are usually very simple objects allowing immediate verification
- [I] for any given object, if the property in question holds for all its predecessors ('smaller' objects) then it holds for the object itself

Example (Structural Induction)

Example

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

$$length(wv) = length(w) + length(v).$$

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Base case ($w = \lambda$):

$$\begin{aligned} \mathsf{length}(\lambda v) &= \mathsf{length}(v) & (\mathsf{concat.B}) \\ &= 0 + \mathsf{length}(v) \\ &= \mathsf{length}(w) + \mathsf{length}(v) & (\mathsf{length.B}) \end{aligned}$$

Example (Structural Induction)

Example

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

$$length(wv) = length(w) + length(v).$$

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Inductive case (w = aw'): Assume that P(w') holds. That is, for all $v \in \Sigma^*$: length(w'v) = length(w') + length(v). Then:

```
\begin{array}{ll} \operatorname{length}((\mathit{aw'})\mathit{v}) &= \operatorname{length}(\mathit{a}(\mathit{w'}\mathit{v})) & (\operatorname{concat.I}) \\ &= 1 + \operatorname{length}(\mathit{w'}\mathit{v}) & (\operatorname{length.I}) \\ &= 1 + \operatorname{length}(\mathit{w'}) + \operatorname{length}(\mathit{v}) & (\operatorname{IH}) \\ &= \operatorname{length}(\mathit{aw'}) + \operatorname{length}(\mathit{v}) & (\operatorname{length.I}) \end{array}
```

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Propositional Logic

- Well-formed formulas (SYNTAX)
- Truth assignments and valuations (SEMANTICS)
- Conjunctive/Disjunctive Normal Forms

Need to know for this course

- Difference between syntax and semantics
- CNF/DNF definitions and (any) technique for converting a formula into CNF/DNF

Syntax of Prop. Logic (Well-formed formulas)

Let $PROP = \{p, q, r, ...\}$ be a set of propositional letters. Consider the alphabet

$$\Sigma = \text{Prop} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}.$$

The **well-formed formulas** (wffs) over PROP is the smallest set of words over Σ such that:

- ullet \top , \bot and all elements of P_{ROP} are wffs
- If φ is a wff then $\neg \varphi$ is a wff
- If φ and ψ are wffs then $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$ are wffs.

Semantics of Propositional Logic (Valuations)

A **truth assignment** (or **model**) is a function $v : PROP \rightarrow \mathbb{B}$

We can extend v to a function $\llbracket \cdot \rrbracket_v : \mathrm{WFFs} \to \mathbb{B}$ recursively:

- $[\![\top]\!]_v = \text{true}, [\![\bot]\!]_v = \text{false}$
- $\bullet \ \llbracket p \rrbracket_v = v(p)$
- $\bullet \ \llbracket \neg \varphi \rrbracket_v = ! \llbracket \varphi \rrbracket_v$
- $\bullet \ \llbracket (\varphi \wedge \psi) \rrbracket_{\mathbf{v}} = \llbracket \varphi \rrbracket_{\mathbf{v}} \&\& \ \llbracket \psi \rrbracket_{\mathbf{v}}$
- $\bullet \ \llbracket (\varphi \lor \psi) \rrbracket_{\mathbf{v}} = \llbracket \varphi \rrbracket_{\mathbf{v}} \parallel \llbracket \psi \rrbracket_{\mathbf{v}}$
- $\bullet \ \llbracket (\varphi \to \psi) \rrbracket_{\mathbf{v}} = ! \llbracket \varphi \rrbracket_{\mathbf{v}} \parallel \llbracket \psi \rrbracket_{\mathbf{v}}$
- $\bullet \ \llbracket (\varphi \leftrightarrow \psi) \rrbracket_v = (! \llbracket \varphi \rrbracket_v \parallel \llbracket \psi \rrbracket_v) \ \&\& \ (! \llbracket \psi \rrbracket_v \parallel \llbracket \varphi \rrbracket_v)$

Satisfiability, Entailment, Equivalence

- A valuation satisfies a theory T if $[\![\varphi]\!]_v = \mathtt{true}$ for every $\varphi \in T$
- A theory/formula is satisfiable if there is some valuation that satisfies it
- A formula is a tautology if every valuation satisfies it
- Entailment: $T \models \varphi$ if for every valuation that satisfies T, we have $\llbracket \varphi \rrbracket_v = \text{true}$
- Logical equivalence: $\varphi \equiv \psi$ if $[\![\varphi]\!]_v = [\![\psi]\!]_v$ for all valuations

Example (Working with Propositional Logic)

Example

You are planning a party, but your friends are a bit touchy about who will be there.

- 1 If John comes, he will get very hostile if Sarah is there.
- Sarah will only come if Kim will be there also.
- Wim says she will not come unless John does.

Who can you invite without making someone unhappy?

Example (Working with Propositional Logic)

Example

Translation to logic: let J, S, K represent "John (Sarah, Kim) comes to the party". Then the constraints are:

- $\mathbf{2} \ S \to K$

Thus, for a successful party to be possible, we want the formula $\phi = (J \to \neg S) \land (S \to K) \land (K \to J)$ to be satisfiable.

Example (Working with Propositional Logic)

Example

Truth table: Each row corresponds to a valuation

J	K	S	J o eg S	$S \to K$	K o J	ϕ
F	F	F				
F	F	Т		F		F
F	Т	F			F	F
F	Т	Т			F	F
Т	F	F				
Т	F	Т	F	F		F
Т	Т	F				
Т	Т	Т	F			F

Conclusion: a party satisfying the constraints can be held. Invite nobody, or invite John only, or invite Kim and John.

Conjunctive/Disjunctive Normal Forms

CNFs and DNFs are syntactic forms:

Literal: A propositional variable or the negation of a

propositional variable

Clause: A CNF-clause is a disjunction (\lor) of literals. A

DNF-clause is a conjunction (\land) of literals

CNF/DNF: A formula is in CNF (DNF) if it is a conjunction

(disjunction) of CNF-clauses (DNF-clauses).

Theorem

Every propositional formula is logically equivalent to one in CNF and one in DNF.

Example (CNF/DNF)

Example

Consider $\varphi = (y \rightarrow x)$:

$$\begin{array}{c|cccc} x & y & y \rightarrow x \\ \hline F & F & T \\ F & T & F \\ T & F & T \\ T & T & T \end{array}$$

Then φ is logically equivalent to:

- $\bullet \ (\neg x \land \neg y) \lor (x \land \neg y) \lor (x \land y) \ (\mathsf{DNF})$
- $\neg y \lor (x \land y)$ (DNF)
- $\neg y \lor x$ (CNF and DNF)

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Predicate Logic

- Well-formed formulas (SYNTAX)
- Models and environments (SEMANTICS)

Need to know for this course

- Translate requirements into Propositional and/or Predicate logic
- Syntax and Semantics definitions
- Satifiability, Validity, Logical equivalence

Syntax of Predicate (First-Order) Logic

Given a vocabulary (predicate symbols, function symbols, constant symbols):

- Terms defined recursively over a set of variables
- Formulas defined recursively:
 - Atomic formulas: built from predicates and equality, and terms
 - Other formulas: built recursively using Boolean connectives and quantifiers
- Parentheses usage relaxed to aid readability
- Free variables "captured" syntactically with $\varphi(x)$ notation

Semantics of Predicate (First-Order) Logic

Given a vocabulary (predicate symbols, function symbols, constant symbols):

- A model interprets all the symbols of the vocabulary over some domain
- $[\![\varphi]\!]_{\mathcal{M}}$ is a **relation** on $\mathsf{Dom}(\mathcal{M})$
- ullet An *environment* assigns variables to elements of $\mathsf{Dom}(\mathcal{M})$
- $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ "looks-up" the tuple defined by η in the relation $\llbracket \varphi \rrbracket_{\mathcal{M}}$ and returns an element of $\mathbb B$ depending on its presence

Satisfiability and Validity

A formula, φ , is:

- Satisfiable if there is some model and environment (interpretation) such that $[\![\varphi]\!]_{\mathcal{M}}^{\eta} = \text{true} (\mathcal{M}, \eta \models \varphi)$
- True in a model \mathcal{M} if for all environments η , \mathcal{M} , $\eta \models \varphi$
- A Logical validity if it is true in all models
- A Logical consequence of a set of formulas T (written $T \models \varphi$) if $\mathcal{M}, \eta \models \varphi$ for all interpretations which satisfy every element of T.
- Logically equivalent to a formula ψ if $[\![\varphi]\!]_{\mathcal{M}}^{\eta} = [\![\psi]\!]_{\mathcal{M}}^{\eta}$ for all interpretations

Satisfiability and Validity

Theorem

- $\emptyset \models \varphi$ if, and only if, φ is a logical validity
- ullet $\varphi \models \psi$ if, and only if, $\varphi \rightarrow \psi$ is a logical validity
- $\varphi \equiv \psi$ if, and only if, $\varphi \leftrightarrow \psi$ is a logical validity

Example (Interpretations)

Example

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- \mathbb{N} with the standard definitions of \leq , +, and 1: true
- $\{0,1,2,3,4\}$ with the standard definition of \leq and 1, and m+n defined as $m+n \pmod 5$: false
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w:

Example (Interpretations)

Example

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- N with the standard definitions of \leq , +, and 1: true
- $\{0,1,2,3,4\}$ with the standard definition of \leq and 1, and m+n defined as m+n (mod 5): false
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w: true

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

- Formal proofs
- Natural Deduction for Propositional Logic
- Natural Deduction for Predicate Logic

Need to know for this course:

- One formal proof style
- How to present proofs in the style
- Rules of Natural Deduction for Propositional Logic
- Rules of Natural Deduction for Predicate Logic
- Relation between Proofs and fundamental logical concepts

Formal proof styles

Three main styles:

- Tabular
- Fitch-style
- Tree

Each logical step should indicate:

- A line number for later reference
- The (undischarged) assumptions required to make the derivation
- The result of the derivation
- The derivation rule used
- Which preiously computed results were required to for the rule

Proof styles: Table

Line	Premises	Formula	Rule	Ref
:	÷	i:	:	:

Advantages: Easy to typeset;

Compact representation

Disadvantages: Structure can be difficult to follow

Proof styles: Fitch-style

$$\begin{array}{c|c}
1. \varphi \\
2. \psi_1 \\
3. \vdots \\
\vdots
\end{array}$$

Advantages: Scope of assumptions is clear;

Style used in online checker

Disadvantages: Rule application often not obvious

Proof styles: Tree

$$\frac{A \to B \qquad A}{B \qquad (\land -I)} (\to -E)$$

Advantages: Proof structure is clear;

Construct directly from rules

Disadvantages: Often unwieldy presentations

 $T \vdash \varphi$: **Prove** φ from T

15+7 Inference rules based on introducing/eliminating boolean operators:

$$\frac{A}{A} \stackrel{B}{\wedge} B (\land -1)$$
 $\frac{A \wedge B}{A} (\land -E1)$ $\frac{A \wedge B}{B} (\land -E2)$

 $T \vdash \varphi$: **Prove** φ from T

15+7 Inference rules based on introducing/eliminating boolean operators:

$$\frac{A \quad B}{A \wedge B} \, (\land \text{-I}) \qquad \frac{A \wedge B}{A} \, (\land \text{-E1}) \qquad \frac{A \wedge B}{B} \, (\land \text{-E2})$$

$$\begin{array}{ccc}
 & A \to B & A \\
\vdots & & B \\
\hline
 & A \to B & (\to -E)
\end{array}$$

$$\begin{array}{ccc}
[A] & & \underline{A} & \neg A \\
\vdots & & \underline{\bot} \\
\neg A & (\neg - I)
\end{array}$$

$$\begin{array}{cccc}
[\neg A] & & \underline{\bot} \\
\underline{\bot} & (IP)
\end{array}$$

Example

Line	Premises	Formula	Rule	References
1		$A \vee (B \wedge C)$	Premise	

Example

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		A	Premise	

Example

Prove: $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \vee B$	V-I1	2

Example

Line Dromices

Prove: $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$

Formula

Line	Premises	Formula	Ruie	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \lor B$	V- I 1	2
4	2	$A \lor C$	∨- 1	2

Example

		, ,	, ,	•
Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \lor B$	∨- I 1	2
4	2	$A \lor C$	∨- I 1	2
5	2	$(A \lor B) \land (A \lor C)$	Λ Ι	2 /

Example

Prove: $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \lor B$	V- I 1	2
4	2	$A \lor C$	V- I 1	2
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4
		/ = ->		

Example

Prove: $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \vee B$	∨- I 1	2
4	2	$A \lor C$	∨- I 1	2
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4
6		$(B \wedge C)$	Premise	

Example

Line	Premises	Formula	Rule	References		
1		$A \lor (B \land C)$	Premise			
2		Α	Premise			
3	2	$A \lor B$	V- I 1	2		
4	2	$A \lor C$	V- I 1	2		
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4		
6		(<i>B</i> ∧ <i>C</i>)	Premise			
7	6	В	^-E1	6		
	_	A / D	V / 10	-		

Example

Line	Premises	Formula	Rule	References		
1		$A \lor (B \land C)$	Premise			
2		Α	Premise			
3	2	$A \lor B$	V- I 1	2		
4	2	$A \lor C$	V- I 1	2		
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4		
6		$(B \wedge C)$	Premise			
7	6	В	^-E1	6		
8	6	$A \lor B$	∨- I 2	7		
	6		л Го	6		

Example

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \vee B$	∨- I 1	2
4	2	$A \lor C$	∨- I 1	2
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4
6		$(B \wedge C)$	Premise	
7	6	В	^- E 1	6
8	6	$A \lor B$	∨- I 2	7
9	6	С	∧- E 2	6
10	6	$A \lor C$	\/_12	0

Example

Line	Premises	Formula	Rule	References	
1		$A \lor (B \land C)$	Premise		
2		A	Premise		
3	2	$A \lor B$	V- I 1	2	
4	2	$A \lor C$	V- I 1	2	
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4	
6		(<i>B</i> ∧ <i>C</i>)	Premise		
7	6	В	^-E1	6	
8	6	$A \lor B$	V- I 2	7	
9	6	С	^-E2	6	
10	6	$A \lor C$	V- I 2	9	
4 4		(1110) (1110)		0.10	

Example

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \lor B$	V- I 1	2
4	2	$A \lor C$	V- I 1	2
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4
6		$(B \wedge C)$	Premise	
7	6	В	^-E1	6
8	6	$A \lor B$	V- I 2	7
9	6	С	∧-E2	6
10	6	$A \lor C$	V- I 2	9
11	6	$(A \lor B) \land (A \lor C)$	∧-I	8, 10
10	1	$(A \lor B) \land (A \lor C)$	\/_F	5 11

Example

Line	Premises	Formula	Rule	References
1		$A \lor (B \land C)$	Premise	
2		Α	Premise	
3	2	$A \lor B$	∨- I 1	2
4	2	$A \lor C$	∨- I 1	2
5	2	$(A \lor B) \land (A \lor C)$	∧-I	3,4
6		(<i>B</i> ∧ <i>C</i>)	Premise	
7	6	В	^- E 1	6
8	6	$A \vee B$	∨- I 2	7
9	6	С	^- E 2	6
10	6	$A \lor C$	∨- I 2	9
11	6	$(A \lor B) \land (A \lor C)$	∧-I	8, 10
12	1	$(A \lor B) \land (A \lor C)$	∨-E	5, 11

Natural Deduction (Predicate Logic only)

(=-I)	$\frac{a=b}{A(b)}\frac{A(a)}{(=-E1)}$	$\frac{a=b \qquad A(b)}{A(a)} (=-E2)$
$\frac{A(c) \qquad (1,2,3)}{\forall x A(x)} \ (\forall -1)$	$\frac{A(c)}{\exists x A(x)} (\exists -1)$	$\frac{\forall x A(x)}{A(c)} (\forall -E)$
$ \begin{array}{ccc} & [A(c)] \\ & \vdots \\ & \exists x A(x) & B \\ & B \end{array} $	(1,2,4) (∃-E)	 (1): c is arbitrary (2): x is not free in A(c) (3): c is not free in A(x) (4): c is not free in B

Example (Fitch-style proof)

Example Prove: $\vdash \forall x \forall y (x = y) \rightarrow (y = x)$

Example

Prove:
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

1.
$$a = b$$

2. $a = a$
3. $b = a$
4. $(a = b) \rightarrow (b = a)$
5. $\forall y (a = y) \rightarrow (y = a)$
6. $\forall x \forall y (x = y) \rightarrow (y = x)$
=-E1: 1,2
 \forall -I: 1-3
 \forall -I: 5

73

Prove:
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

1.
$$a = b$$

2. $a = a$
3. $b = a$
4. $(a = b) \rightarrow (b = a)$
5. $\forall y (a = y) \rightarrow (y = a)$
=-I
=-E1: 1,2

Prove:
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

2.
$$a = a$$

$$3.\;b=a$$

4.
$$(a = b) \rightarrow (b = a)$$

5.
$$\forall y (a = y) \rightarrow (y = a)$$

6.
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

Example

Prove:
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

1.
$$a = b$$

2.
$$a = a$$

3.
$$b = a$$

$$4.\ (a=b)\to (b=a)$$

5.
$$\forall y (a = y) \rightarrow (y = a)$$

6.
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

∀-I: 5

Prove:
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

1.
$$a = b$$

2.
$$a = a$$

3.
$$b = a$$

$$4.\ (a=b)\to (b=a)$$

5.
$$\forall y (a = y) \rightarrow (y = a)$$

6.
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

Prove:
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

1.
$$a = b$$

2.
$$a = a$$

3.
$$b = a$$

$$4.\ (a=b)\to (b=a)$$

5.
$$\forall y (a = y) \rightarrow (y = a)$$

6.
$$\forall x \forall y (x = y) \rightarrow (y = x)$$

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Hoare Logic

- ullet Simple imperative language ${\cal L}$
- Hoare triple $\{\varphi\} P \{\psi\}$ (SYNTAX)
- Derivation rules (PROOFS)
- Semantics for Hoare logic (SEMANTICS)

Need to know for this course:

- Write programs in \mathcal{L} .
- Give proofs using the Hoare logic rules
- Definition of [[·]]

The language \mathcal{L}

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

Sequencing: P;Q

Conditional: if b then P else Q fi

where b is a boolean expression.

While: while b do P od

Hoare triple (Syntax)

$$\left\{ \varphi\right\} P\left\{ \psi\right\}$$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

$$\vdash \{\varphi\} P \{\psi\}$$

 $\{arphi\}\,P\,\{\psi\}$ is **derivable** using the proof rules of Hoare Logic

$$\models \{\varphi\} P \{\psi\}$$

 $\{\varphi\} P \{\psi\}$ is **valid** according to the semantic interpretation.

Hoare triple (Syntax)

$$\left\{ \varphi\right\} P\left\{ \psi\right\}$$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

$$\vdash \{\varphi\} P \{\psi\}$$

 $\{\varphi\} P \{\psi\}$ is **derivable** using the proof rules of Hoare Logic

$$\models \{\varphi\} P \{\psi\}$$

 $\{arphi\}$ P $\{\psi\}$ is **valid** according to the semantic interpretation.

Hoare triple (Syntax)

$$\{\varphi\} P \{\psi\}$$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

$$\vdash \{\varphi\} P \{\psi\}$$

 $\left\{ \varphi\right\} P\left\{ \psi\right\}$ is $\mbox{derivable}$ using the proof rules of Hoare Logic

$$\models \{\varphi\} P \{\psi\}$$

 $\{\varphi\} P \{\psi\}$ is **valid** according to the semantic interpretation.

Hoare logic rules

$$\frac{}{\{\varphi[e/x]\}\,x:=e\,\{\varphi\}}\quad \text{(ass)}$$

$$\frac{\{\varphi\} P \{\psi\} \qquad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \qquad \text{(seq)}$$

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Hoare logic rules

$$\frac{}{\{\varphi(e)\}\,x:=e\,\{\varphi(x)\}} \quad \text{(ass)}$$

$$\frac{\{\varphi\} P \{\psi\} \qquad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \qquad \text{(seq)}$$

$$\frac{\{\varphi \wedge g\} P \{\psi\} \qquad \{\varphi \wedge \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Hoare logic rules

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} \ P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} \ P \{\psi'\}} \qquad \text{(cons)}$$


```
Example
                                                 {True}
       f := 1;
       k := 0:
      while \neg(k=n) do
         k := k + 1:
         f := f * k
       od
                                                 {f = n!}
```


 $\{f=n!\}$

 $\{(f=k!)\wedge (k=n)\}$

od

Example {True} f := 1; k := 0: ${f = k!}$ $\{(f=k!) \land \neg(k=n)\}$ while $\neg(k=n)$ do k := k + 1: f := f * k ${f = k!}$ $\{(f=k!) \land (k=n)\}$ od $\{f=n!\}$

```
{TRUE}
                                              \{1 = 0!\}
                                             \{f = 0!\}
f := 1:
k := 0:
                                             {f = k!}
while \neg(k=n) do
                               \{(f=k!) \land \neg(k=n)\}
                               \{f(k+1)=(k+1)!\}
  k := k + 1:
                                            \{ fk = k! \}
  f := f * k
                                             \{f = k!\}
                                \{(f = k!) \land (k = n)\}
od
                                             {f = n!}
```

Hoare logic semantics

 Env : set of environments (functions that map variables to numeric values)

 $\langle \cdot \rangle : \text{Predicates} \to \text{Pow}(\text{Env})$, given by:

$$\langle \varphi \rangle := \{ \eta \in \text{Env} : \llbracket \varphi \rrbracket^{\eta} = \text{true} \}.$$

 $\llbracket \cdot \rrbracket : PROGRAMS \cup PREDICATES \rightarrow Pow(Env \times Env)$

Hoare logic semantics

 $\llbracket \cdot \rrbracket : Programs \cup Predicates \rightarrow Pow(Env \times Env)$

For predicates:
$$\llbracket \varphi \rrbracket = \{(\eta, \eta) : \eta \in \langle \varphi \rangle \}$$

For programs: Inductively:

- $[x := e] = \{(\eta, \eta') : \eta' = \eta[x \mapsto [e]^{\eta}]\}$
- [P; Q] = [P]; [Q]
- [if b then P else Q fi] = [b; P] \cup [$\neg b$; Q]
- [while b do P od]] = [b; P]*; [$\neg b$]

Example ([z := 2])

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Transition systems

- Definitions:
 - States and Transitions
 - (Non-)determinism
 - Reachability
- The Invariant Principle
- Termination

Need to know for this course:

- Definitions
- Invariant principle
- Termination proofs

The Invariant Principle

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \to s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

Termination

A transition system (S, \rightarrow) **terminates** from a state s if there is an N such that all runs from s have length at most N.

A **derived variable** is a function $f: S \to \mathbb{R}$.

A derived variable is **strictly decreasing** if $s \to s'$ implies f(s) > f(s').

Theorem

If f is an \mathbb{N} -valued, strictly decreasing derived variable, then the length of any run from s is at most f(s).

Example (Transition system)

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- Preserved invariant: rx^y is a constant
- \Rightarrow All states reachable from (m, n, 1) will satisfy $rx^y = m^n$
- $\bullet \Rightarrow \text{if } (x,0,r) \text{ is reachable from } (m,n,1) \text{ then } r=m^n.$

Automata and formal languages

- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)
- Regular expressions
- Myhill-Nerode theorem
- Context-free languages

Need to know for this course:

- The language defined by DFAs, NFAs, Regular expressions, and context-free grammars
- Principal applications of the Myhill-Nerode theorem

Topic Summary

- Fundamentals
- Set Theory and Boolean Algebras
- Inductive definitions, datatypes, and proofs
- Propositional Logic
- Predicate Logic
- Natural Deduction
- Hoare Logic
- Transition systems
- Automata and formal languages

Deterministic Finite Automata

A **deterministic finite automaton (DFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- \bullet Σ is the input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Non-deterministic Finite Automata

A non-deterministic finite automaton (NFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Language accepted by a DFA/NFA

A sequence of input symbols defines a run in a DFA (or several runs in an NFA).

A run is accepting if it ends in a final state. A word is accepted if at least one run is accepting.

L(M) is the set of all words accepted by M.

Example (Language of an NFA)

Example $0,1 \qquad 1 \qquad 0,\epsilon \\ q_0 \qquad 1 \qquad q_1 \qquad q_2$ Accepted words: 1, 01, 11, 10, ...

Regular expressions

Specify language by "matching"

Defined recursively:

- ∅ is a regular expression
- ullet is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_1 , E_2 are regular expressions then so are:
 - $E_1 + E_2$
 - \bullet E_1E_2
 - E_1^*

L(E): set of words that match E

Example (Regular expression)

Example

The following words match (000 + 10)*01:

- 01
- 101001
- 000101000001

Myhill-Nerode theorem

Algebraic characterization of regular languages

Syntactic (context) equivalence:

 $v \equiv_L w$ if, and only if, $\forall z.wz \in L \leftrightarrow vz \in L$.

Theorem (Myhill-Nerode theorem)

A language L is regular if, and only if, \equiv_L has finitely many equivalence classes. Moreover the number of equivalence classes is equal to the minimum number of states of a DFA required to recognise L

Context free grammars

Generative means of specifying language.

Grammar consists of:

- Non-terminal symbols
- Terminal symbols
- Rules for rewriting non-terminal symbols into strings of non-terminal and terminal symbols
- A starting (non-terminal) symbol

Word w generated by a grammar if a series of rewrite rules, starting from the start symbol, will result in w.

Language of a grammar is the set of words generated by it.

Example (CFGs)

Example

Formal (recursive) definitions:

- Regular expressions
- Propositional formulas
- ullet $\mathcal L$ programs (and other languages)

