
COMP2111 Week 10
Term 1, 2019
Course review

1

Course goals

Reinforce concepts from Discrete Mathematics

Emphasise the connections between Discrete Mathematics
and Computer Science

Use mathematical concepts to reason about programs:

Acquire (and understand) languages to formally specify
systems
Acquire (and understand) structures to formally model systems
Learn how to prove that a program satisfies its specification

2

Course goals

Reinforce concepts from Discrete Mathematics

Emphasise the connections between Discrete Mathematics
and Computer Science

Use mathematical concepts to reason about programs:

Acquire (and understand) languages to formally specify
systems
Acquire (and understand) structures to formally model systems
Learn how to prove that a program satisfies its specification

3

Course goals

Reinforce concepts from Discrete Mathematics

Emphasise the connections between Discrete Mathematics
and Computer Science

Use mathematical concepts to reason about programs:

Acquire (and understand) languages to formally specify
systems
Acquire (and understand) structures to formally model systems
Learn how to prove that a program satisfies its specification

4

Course goals

Reinforce concepts from Discrete Mathematics

Emphasise the connections between Discrete Mathematics
and Computer Science

Use mathematical concepts to reason about programs:

Acquire (and understand) languages to formally specify
systems
Acquire (and understand) structures to formally model systems
Learn how to prove that a program satisfies its specification

5

Course goals

Reinforce concepts from Discrete Mathematics

Emphasise the connections between Discrete Mathematics
and Computer Science

Use mathematical concepts to reason about programs:

Acquire (and understand) languages to formally specify
systems
Acquire (and understand) structures to formally model systems
Learn how to prove that a program satisfies its specification

6

Course goals

Reinforce concepts from Discrete Mathematics

Emphasise the connections between Discrete Mathematics
and Computer Science

Use mathematical concepts to reason about programs:

Acquire (and understand) languages to formally specify
systems
Acquire (and understand) structures to formally model systems
Learn how to prove that a program satisfies its specification

7

Assessment details

Assignment 1: 20%

Assignment 2: 15%

Assignment 3: 15%

Final exam: 50%

NB

You must achieve 40% on the final exam and 50% overall to pass.

8

Final exam

Goal: Assess your understanding of the concepts in this course

Requires you to demonstrate:

Understanding of the topics covered

Ability to apply these concepts and explain how they work

Lectures, assignments and tutorials have built you up to this point.

9

Exam details

Wednesday, 15 May, 8:45AM
Randwick Racecourse Ballroom

5 short answer questions and 5 long answer questions

Topics taken from all content up to (and including)
Context-Free Grammars.

Each short answer question is worth 4 marks
Each long answer question is worth 20 marks
Total exam marks = 120 (i.e. 1 mark/minute)

Time allowed: 120 minutes + 10 minutes reading time

One handwritten or typed A4-sized sheet (double-sided is ok)
of your own notes

Formula sheet with rules/laws included

10

Exam structure

Short answer questions:

Short questions designed to check your understanding of
definitions

2–3 sentence justifications if necessary

Answer in exam booklet not on exam paper

Long answer questions:

“Proof” questions designed to examine your understanding at
a deeper level

Answer in exam booklet: start each question on a new
page

Put the order questions were attempted on the front.

11

Exam structure

Short answer questions:

Short questions designed to check your understanding of
definitions

2–3 sentence justifications if necessary

Answer in exam booklet not on exam paper

Long answer questions:

“Proof” questions designed to examine your understanding at
a deeper level

Answer in exam booklet: start each question on a new
page

Put the order questions were attempted on the front.

12

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

13

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

14

Fundamentals

Sets

Languages

Relations and Functions

Need to know for this course:

Formal language definitions

Relation/function definitions

Equivalence relations

Partial orders

15

Relation/Function definitions

Reflexive, anti-reflexive

Symmetric, anti-symmetric

Transitive

Composition, converse, inverse

Injective, surjective, bijective

16

Example (Properties)

Example

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

17

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

18

Set Theory and Boolean Algebras

Sets

Boolean Algebras

Need to know for this course:

Proofs using the Laws of Set Operations

Proofs using the Laws of Boolean Algebras

Principle of duality

19

Definition: Boolean Algebra
A Boolean algebra is a structure (T ,∨,∧,′ , 0, 1) where

0, 1 ∈ T

∨ : T × T → T (called join)

∧ : T × T → T (called meet)
′ : T → T (called complementation)

and the following laws hold for all x , y , z ∈ T :

commutative: x ∨ y = y ∨ x
x ∧ y = y ∧ x

associative: (x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

distributive: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

identity: x ∨ 0 = x , x ∧ 1 = x

complementation: x ∨ x ′ = 1, x ∧ x ′ = 0

20

Example (Proof using Laws of Set Operations)

Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

21

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

22

Inductive definitions, datatypes, and proofs

Recursion

Recursive datatypes and functions

Induction and structural induction

Need to know for this course:

How to define structures/functions recursively

How to prove properties of recursively defined structures

23

Inductive definitions

Inductively defined structure:

Base case(s): “Minimal” structures

Inductive case(s): How to build more complex structures from
simple ones

Recursively defined functions:

Base case(s): Terminating conditions

Recursive case(s): Call functions with “smaller” inputs

24

Example (Inductive definitions)

Example (Inductively defined structures)

Natural numbers:

Base case: 0
Inductive case: n + 1 where n is a Natural number

Σ∗:

Base case: λ
Inductive case: aw where a ∈ Σ and w ∈ Σ∗

Well-formed formulas

L programs

Regular expressions

25

Example (Inductive definitions)

Example (Recursively defined functions)

length : Σ∗ → Σ∗

Base case: length(λ) = 0
Inductive case: length(aw) = 1 + length(w)

[[·]]v : WFFs→ B
[[·]]ηM : WFFs→ B
[[·]] : Programs→ Pow(Env×Env)

L(·) : RegExp→ Pow(Σ∗)

26

Structural Induction

Basic induction allows us to assert properties over all natural
numbers. The induction scheme (layout) uses the recursive
definition of N.

The induction schemes can be applied not only to natural numbers
(and integers) but to any partially ordered set in general –
especially those defined recursively.

The basic approach is always the same — we need to verify that

[B] the property holds for all minimal objects — objects that
have no predecessors; they are usually very simple objects
allowing immediate verification

[I] for any given object, if the property in question holds for
all its predecessors (‘smaller’ objects) then it holds for the
object itself

27

Example (Structural Induction)

Example

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Base case (w = λ):

length(λv) = length(v) (concat.B)
= 0 + length(v)
= length(w) + length(v) (length.B)

28

Example (Structural Induction)

Example

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗: length(w ′v) = length(w ′) + length(v). Then:

length((aw ′)v) = length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

29

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

30

Propositional Logic

Well-formed formulas (SYNTAX)

Truth assignments and valuations (SEMANTICS)

Conjunctive/Disjunctive Normal Forms

Need to know for this course

Difference between syntax and semantics

CNF/DNF definitions and (any) technique for converting a
formula into CNF/DNF

31

Syntax of Prop. Logic (Well-formed formulas)

Let Prop = {p, q, r , . . .} be a set of propositional letters.
Consider the alphabet

Σ = Prop ∪ {>,⊥,¬,∧,∨,→,↔, (,)}.

The well-formed formulas (wffs) over Prop is the smallest set of
words over Σ such that:

>, ⊥ and all elements of Prop are wffs

If ϕ is a wff then ¬ϕ is a wff

If ϕ and ψ are wffs then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), and
(ϕ↔ ψ) are wffs.

32

Semantics of Propositional Logic (Valuations)

A truth assignment (or model) is a function v : Prop→ B

We can extend v to a function [[·]]v : WFFs→ B recursively:

[[>]]v = true, [[⊥]]v = false

[[p]]v = v(p)

[[¬ϕ]]v = ![[ϕ]]v
[[(ϕ ∧ ψ)]]v = [[ϕ]]v && [[ψ]]v
[[(ϕ ∨ ψ)]]v = [[ϕ]]v ‖ [[ψ]]v
[[(ϕ→ ψ)]]v = ![[ϕ]]v ‖ [[ψ]]v
[[(ϕ↔ ψ)]]v = (![[ϕ]]v ‖ [[ψ]]v) && (![[ψ]]v ‖ [[ϕ]]v)

33

Satisfiability, Entailment, Equivalence

A valuation satisfies a theory T if [[ϕ]]v = true for every
ϕ ∈ T

A theory/formula is satisfiable if there is some valuation that
satisfies it

A formula is a tautology if every valuation satisfies it

Entailment: T |= ϕ if for every valuation that satisfies T , we
have [[ϕ]]v = true

Logical equivalence: ϕ ≡ ψ if [[ϕ]]v = [[ψ]]v for all valuations

34

Example (Working with Propositional Logic)

Example

You are planning a party, but your friends are a bit touchy about
who will be there.

1 If John comes, he will get very hostile if Sarah is there.

2 Sarah will only come if Kim will be there also.

3 Kim says she will not come unless John does.

Who can you invite without making someone unhappy?

35

Example (Working with Propositional Logic)

Example

Translation to logic: let J,S ,K represent “John (Sarah, Kim) comes
to the party”. Then the constraints are:

1 J → ¬S
2 S → K

3 K → J

Thus, for a successful party to be possible, we want the formula
φ = (J → ¬S) ∧ (S → K) ∧ (K → J) to be satisfiable.

36

Example (Working with Propositional Logic)

Example

Truth table: Each row corresponds to a valuation
J K S J → ¬S S → K K → J φ

F F F
F F T F F
F T F F F
F T T F F
T F F
T F T F F F
T T F
T T T F F

Conclusion: a party satisfying the constraints can be held. Invite
nobody, or invite John only, or invite Kim and John.

37

Conjunctive/Disjunctive Normal Forms

CNFs and DNFs are syntactic forms:

Literal: A propositional variable or the negation of a
propositional variable

Clause: A CNF-clause is a disjunction (∨) of literals. A
DNF-clause is a conjunction (∧) of literals

CNF/DNF: A formula is in CNF (DNF) if it is a conjunction
(disjunction) of CNF-clauses (DNF-clauses).

Theorem

Every propositional formula is logically equivalent to one in CNF
and one in DNF.

38

Example (CNF/DNF)

Example

Consider ϕ = (y → x):

x y y → x

F F T
F T F
T F T
T T T

Then ϕ is logically equivalent to:

(¬x ∧ ¬y) ∨ (x ∧ ¬y) ∨ (x ∧ y) (DNF)

¬y ∨ (x ∧ y) (DNF)

¬y ∨ x (CNF and DNF)

39

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

40

Predicate Logic

Well-formed formulas (SYNTAX)

Models and environments (SEMANTICS)

Need to know for this course

Translate requirements into Propositonal and/or Predicate
logic

Syntax and Semantics definitions

Satifiability, Validity, Logical equivalence

41

Syntax of Predicate (First-Order) Logic

Given a vocabulary (predicate symbols, function symbols, constant
symbols):

Terms defined recursively over a set of variables

Formulas defined recursively:

Atomic formulas: built from predicates and equality, and terms
Other formulas: built recursively using Boolean connectives
and quantifiers

Parentheses usage relaxed to aid readability

Free variables “captured” syntactically with ϕ(x) notation

42

Semantics of Predicate (First-Order) Logic

Given a vocabulary (predicate symbols, function symbols, constant
symbols):

A model interprets all the symbols of the vocabulary over
some domain

[[ϕ]]M is a relation on Dom(M)

An environment assigns variables to elements of Dom(M)

[[ϕ]]ηM “looks-up” the tuple defined by η in the relation [[ϕ]]M
and returns an element of B depending on its presence

43

Satisfiability and Validity

A formula, ϕ, is:

Satisfiable if there is some model and environment
(interpretation) such that [[ϕ]]ηM = true (M, η |= ϕ)

True in a model M if for all environments η, M, η |= ϕ

A Logical validity if it is true in all models

A Logical consequence of a set of formulas T (written
T |= ϕ) if M, η |= ϕ for all interpretations which satisfy every
element of T .

Logically equivalent to a formula ψ if [[ϕ]]ηM = [[ψ]]ηM for all
interpretations

44

Satisfiability and Validity

Theorem

∅ |= ϕ if, and only if, ϕ is a logical validity

ϕ |= ψ if, and only if, ϕ→ ψ is a logical validity

ϕ ≡ ψ if, and only if, ϕ↔ ψ is a logical validity

45

Example (Interpretations)

Example

∀x∀y((y = x + 1)→ (x ≤ y))

N with the standard definitions of ≤, +, and 1: true

{0, 1, 2, 3, 4} with the standard definition of ≤ and 1, and
m + n defined as m + n (mod 5): false

The directed graph G = (V ,E) shown below with ≤= E ; and
v + w defined to be w : true

1

2

3

4

46

Example (Interpretations)

Example

∀x∀y((y = x + 1)→ (x ≤ y))

N with the standard definitions of ≤, +, and 1: true

{0, 1, 2, 3, 4} with the standard definition of ≤ and 1, and
m + n defined as m + n (mod 5): false

The directed graph G = (V ,E) shown below with ≤= E ; and
v + w defined to be w : true

1

2

3

4

47

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

48

Natural Deduction

Formal proofs

Natural Deduction for Propositional Logic

Natural Deduction for Predicate Logic

Need to know for this course:

One formal proof style

How to present proofs in the style

Rules of Natural Deduction for Propositional Logic

Rules of Natural Deduction for Predicate Logic

Relation between Proofs and fundamental logical concepts

49

Formal proof styles

Three main styles:

Tabular

Fitch-style

Tree

Each logical step should indicate:

A line number for later reference

The (undischarged) assumptions required to make the
derivation

The result of the derivation

The derivation rule used

Which preiously computed results were required to for the rule

50

Proof styles: Table

Line Premises Formula Rule Ref

...
...

...
...

...

Advantages: Easy to typeset;
Compact representation

Disadvantages: Structure can be difficult to follow

51

Proof styles: Fitch-style

1. ϕ

2. ψ1

3.
...

...

Advantages: Scope of assumptions is clear;
Style used in online checker

Disadvantages: Rule application often not obvious

52

Proof styles: Tree

A

A→ B A
(→-E)

B
(∧-I)

A ∧ B

Advantages: Proof structure is clear;
Construct directly from rules

Disadvantages: Often unwieldy presentations

53

Natural Deduction

T ` ϕ: Prove ϕ from T

15+7 Inference rules based on introducing/eliminating boolean
operators:

A B
(∧-I)

A ∧ B
A ∧ B

(∧-E1)
A

A ∧ B
(∧-E2)

B

A
(∨-I1)

A ∨ B
B

(∨-I2)
A ∨ B

A ∨ B

[A]

...
C

[B]

...
C

(∨-E)
C

54

Natural Deduction

T ` ϕ: Prove ϕ from T

15+7 Inference rules based on introducing/eliminating boolean
operators:

A B
(∧-I)

A ∧ B
A ∧ B

(∧-E1)
A

A ∧ B
(∧-E2)

B

A
(∨-I1)

A ∨ B
B

(∨-I2)
A ∨ B

A ∨ B

[A]

...
C

[B]

...
C

(∨-E)
C

55

Natural Deduction

[A]

...
B

(→-I)
A→ B

A→ B A
(→-E)

B

[A]

...
B

[B]

...
A

(↔-I)
A↔ B

A↔ B A
(↔-E1)

B
A↔ B B

(↔-E1)
A

56

Natural Deduction

[A]

...
⊥

(¬-I)
¬A

A ¬A
(¬-E)

⊥

[¬A]

...
⊥

(IP)
A

⊥
(X)

A

57

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

58

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

59

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

60

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

61

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

62

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

63

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

64

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

65

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

66

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

67

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

68

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

69

Example (Tabular proof)

Example

Prove: A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

Line Premises Formula Rule References
1 A ∨ (B ∧ C) Premise
2 A Premise
3 2 A ∨ B ∨-I1 2
4 2 A ∨ C ∨-I1 2
5 2 (A ∨ B) ∧ (A ∨ C) ∧-I 3, 4
6 (B ∧ C) Premise
7 6 B ∧-E1 6
8 6 A ∨ B ∨-I2 7
9 6 C ∧-E2 6

10 6 A ∨ C ∨-I2 9
11 6 (A ∨ B) ∧ (A ∨ C) ∧-I 8, 10
12 1 (A ∨ B) ∧ (A ∨ C) ∨-E 5, 11

70

Natural Deduction (Predicate Logic only)

(=-I)a = a
a = b A(a)

(=-E1)
A(b)

a = b A(b)
(=-E2)

A(a)

A(c) (1,2,3)
(∀-I)

∀xA(x)

A(c) (2)
(∃-I)

∃xA(x)

∀xA(x)
(∀-E)

A(c)

∃xA(x)

[A(c)]

...
B (1,2,4)

(∃-E)
B

(1): c is arbitrary
(2): x is not free in A(c)
(3): c is not free in A(x)
(4): c is not free in B

71

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

72

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

73

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

74

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

75

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

76

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

77

Example (Fitch-style proof)

Example

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5

78

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

79

Hoare Logic

Simple imperative language L
Hoare triple {ϕ}P {ψ} (SYNTAX)

Derivation rules (PROOFS)

Semantics for Hoare logic (SEMANTICS)

Need to know for this course:

Write programs in L.

Give proofs using the Hoare logic rules

Definition of [[·]]

80

The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od

81

Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:
If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

` {ϕ}P {ψ}

{ϕ}P {ψ} is derivable using the proof rules of Hoare Logic

|= {ϕ}P {ψ}

{ϕ}P {ψ} is valid according to the semantic interpretation.

82

Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:
If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

` {ϕ}P {ψ}

{ϕ}P {ψ} is derivable using the proof rules of Hoare Logic

|= {ϕ}P {ψ}

{ϕ}P {ψ} is valid according to the semantic interpretation.

83

Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:
If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

` {ϕ}P {ψ}

{ϕ}P {ψ} is derivable using the proof rules of Hoare Logic

|= {ϕ}P {ψ}

{ϕ}P {ψ} is valid according to the semantic interpretation.

84

Hoare logic rules

(ass)
{ϕ[e/x]} x := e {ϕ}

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

85

Hoare logic rules

(ass)
{ϕ(e)} x := e {ϕ(x)}

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

86

Hoare logic rules

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

87

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

88

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

89

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

90

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

91

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

92

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

93

Example (Hoare Logic proof [annotated])

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

94

Hoare logic semantics

Env: set of environments (functions that map variables to
numeric values)

〈·〉 : Predicates→ Pow(Env), given by:

〈ϕ〉 := {η ∈ Env : [[ϕ]]η = true}.

[[·]] : Programs ∪Predicates→ Pow(Env×Env)

95

Hoare logic semantics

[[·]] : Programs ∪Predicates→ Pow(Env×Env)

For predicates: [[ϕ]] = {(η, η) : η ∈ 〈ϕ〉}

For programs: Inductively:

[[x := e]] = {(η, η′) : η′ = η[x 7→ [[e]]η]}
[[P;Q]] = [[P]]; [[Q]]

[[if b then P else Q fi]] = [[b;P]] ∪ [[¬b;Q]]

[[while b do P od]] = [[b;P]]∗; [[¬b]]

96

Example ([[z := 2]])

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

97

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

98

Transition systems

Definitions:

States and Transitions
(Non-)determinism
Reachability

The Invariant Principle

Termination

Need to know for this course:

Definitions

Invariant principle

Termination proofs

99

The Invariant Principle

A preserved invariant of a transition system is a unary predicate
ϕ on states such that if ϕ(s) holds and s → s ′ then ϕ(s ′) holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

100

Termination

A transition system (S ,→) terminates from a state s if there is
an N such that all runs from s have length at most N.

A derived variable is a function f : S → R.

A derived variable is strictly decreasing if s → s ′ implies
f (s) > f (s ′).

Theorem

If f is an N-valued, strictly decreasing derived variable, then the
length of any run from s is at most f (s).

101

Example (Transition system)

Example

States: Z× Z× Z
Transition:

(x , y , r)→ (x2, y2 , r) if y is even

(x , y , r)→ (x2, y−1
2 , rx) if y is odd

Preserved invariant: rxy is a constant

⇒ All states reachable from (m, n, 1) will satisfy rxy = mn

⇒ if (x , 0, r) is reachable from (m, n, 1) then r = mn.

102

Automata and formal languages

Deterministic Finite Automata (DFAs)

Non-deterministic Finite Automata (NFAs)

Regular expressions

Myhill-Nerode theorem

Context-free languages

Need to know for this course:

The language defined by DFAs, NFAs, Regular expressions,
and context-free grammars

Principal applications of the Myhill-Nerode theorem

103

Topic Summary

Fundamentals

Set Theory and Boolean Algebras

Inductive definitions, datatypes, and proofs

Propositional Logic

Predicate Logic

Natural Deduction

Hoare Logic

Transition systems

Automata and formal languages

104

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

A deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states

Σ is the input alphabet

δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states

105

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

A non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states

Σ is the input alphabet

δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states

106

Language accepted by a DFA/NFA

A sequence of input symbols defines a run in a DFA (or several
runs in an NFA).

A run is accepting if it ends in a final state. A word is accepted if
at least one run is accepting.

L(M) is the set of all words accepted by M.

107

Example (Language of an NFA)

Example

q0 q1 q2

0,1

1

1

0,ε

0

Accepted words: 1, 01, 11, 10, . . .

108

Regular expressions

Specify language by “matching”

Defined recursively:

∅ is a regular expression

ε is a regular expression

a is a regular expression for all a ∈ Σ

If E1, E2 are regular expressions then so are:

E1 + E2

E1E2

E∗
1

L(E): set of words that match E

109

Example (Regular expression)

Example

The following words match (000 + 10)∗01:

01

101001

000101000001

110

Myhill-Nerode theorem

Algebraic characterization of regular languages

Syntactic (context) equivalence:

v ≡L w if, and only if, ∀z .wz ∈ L↔ vz ∈ L.

Theorem (Myhill-Nerode theorem)

A language L is regular if, and only if, ≡L has finitely many
equivalence classes. Moreover the number of equivalence classes is
equal to the minimum number of states of a DFA required to
recognise L

111

Context free grammars

Generative means of specifying language.

Grammar consists of:

Non-terminal symbols

Terminal symbols

Rules for rewriting non-terminal symbols into strings of
non-terminal and terminal symbols

A starting (non-terminal) symbol

Word w generated by a grammar if a series of rewrite rules,
starting from the start symbol, will result in w .

Language of a grammar is the set of words generated by it.

112

Example (CFGs)

Example

Formal (recursive) definitions:

Regular expressions

Propositional formulas

L programs (and other languages)

113

