
Click to edit Present’s Name

Week 2 – ROS Continued

COMP3431
Robot Software Architectures

COMP3431 – Robot Software Architectures

ROS Continued
What we're doing today:

● Recap from last week

● Example of turtlebot setup

● Frames of Reference

● Closer look at diferent ROS tools

● Sensors

● In-class exercise

COMP3431 – Robot Software Architectures

ROS Recap
● Peer-to-peer comms for distributed processes

(nodes).
● Library of drivers, flters (e.g., mapping), behaviours

(e.g., navigation).
● Not real-time.
● Multi-language support:

– APIs for Python, C++, and Lisp; also support for Java, C#, and
others.

COMP3431 – Robot Software Architectures

ROS Recap – Basics
● ROS Nodes - registration at process startup.
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).

/maps/grid1

SubscribersPublishers Named Topic

*Commonly: one publisher and many subscribers

COMP3431 – Robot Software Architectures

ROS Basics
● ROS Nodes - registration at process startup.
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).
– ROS Services: remote procedure call (one-to-one).

ServerClient

/maps/enable

Request

Response

Named Service

COMP3431 – Robot Software Architectures

Nodes in a Distributed System
● Nodes can be on diferent computers.
● Requires some care:

– Turn of local frewalls
– Evironment variables to specify addresses of nodes and master:

● ROS_MASTER_URI - location of the master.
● ROS_IP/ROS_HOSTNAME - node registers with master using this value.

– Safest to use IP addresses (not hostnames).
export ROS_MASTER_URI=http://192.168.1.2:11311
export ROS_IP=192.168.1.5

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup
The Turtlebot3’s computer is limited so we want to of-load as much
processing as possible to an external workstation (or VM).

Turtlebot3
IP: 192.168.1.10

Workstation/VM
IP: 192.168.1.20

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup – Step 1
Set ROS_MASTER_URI and ROS_IP (or ROS_HOSTNAME) for all terminals on each computer.

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

tb3/ws$ export ROS_MASTER_URI=192.168.1.200:11311

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup – Step 2

master

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

Spawn master in new terminal on workstation:

ws$ roscore

* roscore spawns master but also parameter
server and logging outputs (not shown here).

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup – Step 3

master

Run turtlebot3 startup in terminal on robot:

tb3$ roslaunch turtlebot3_bringup turtlebot3_robot.launch

lidar

rsense

base

What this does:

● Spawns nodes to talk to hardware

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup – Step 3

What this does:

● Spawns nodes to talk to hardware

● Nodes register with master

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

rsense

base

master

Run turtlebot startup in terminal on robot:

tb3$ roslaunch turtlebot3_bringup turtlebot3_robot.launch

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup – Step 3

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

rsense

base

master

Run turtlebot startup in terminal on robot:

tb3$ roslaunch turtlebot3_bringup turtlebot3_robot.launch

/cmd_vel

What this does:

● Spawns nodes to talk to hardware

● Nodes register with master

● base subscribes to /cmd_vel topic

COMP3431 – Robot Software Architectures

Turtlebot3 Basic Setup

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

rsense

base

master

This is the basic setup. Everything else builds on this:

/cmd_vel
● Keyboard teleoperation

● Visualisation using rviz

● Mapping (SLAM)

● Autonomous operations

COMP3431 – Robot Software Architectures

Turtlebot3 Teleop – Step 4
Set the turtlebot3 type on the workstation:

ws$ export TURTLEBOT3_MODEL=waffle

What this does:

● Sets environment variable for teleop

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

kinect

base

master

kbd_ctl

/cmd_vel

TURTLEBOT3_MODEL=waffle

COMP3431 – Robot Software Architectures

Turtlebot Teleop – Step 5
Run turtlebot teleop in workstation terminal:

ws$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

What this does:

● Spawns node to listen to keyboard

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

kinect

base

master

kbd_ctl

/cmd_vel

TURTLEBOT3_MODEL=waffle

COMP3431 – Robot Software Architectures

Turtlebot Teleop – Step 5

What this does:

● Spawns node to listen to keyboard

● Node registers with master

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

kinect

base

master

kbd_ctl

/cmd_vel

Run turtlebot teleop in workstation terminal:

ws$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

TURTLEBOT3_MODEL=waffle

COMP3431 – Robot Software Architectures

What this does:

● Spawns node to listen to keyboard

● Node registers with master

● kbd_ctl publishes to /cmd_vel topic

Turtlebot3
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_IP=192.168.1.20

lidar

kinect

base

master

kbd_ctl

/cmd_vel

Run turtlebot teleop in workstation terminal:

ws$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Turtlebot Teleop – Step 5

TURTLEBOT3_MODEL=waffle

COMP3431 – Robot Software Architectures

Frames of Reference
● ROS standardises the transformation model between diferent

coordinate frames of reference.
● Right Hand Rule, X forward (XYZ RGB)↔
● Tree structure:

– /map
● /base_link

– /base_footprint
– /laser

● Example: laser detected object is relative to laser frame. Need to
transform to map coordinate to know where it is on the map.

COMP3431 – Robot Software Architectures

ROS Tools and Programs – 1
● Often frst thing you run:

– Spawns ROS master – already explained
– Creates a logging node (listening on topic /rosout).
– Parameter server (http://wiki.ros.org/Parameter%20Server):

● Shared dictionary for storing runtime parameters
● Provides fexibility for storing confguration data
● Hierarchical structure (don't confuse with topic names or frames).
● Allows private names – confguration specifc to a single node.

$ roscore

http://wiki.ros.org/Parameter%20Server

COMP3431 – Robot Software Architectures

ROS Tools and Programs – 2
● What is the diference between roslaunch and rosrun?
● What is going on when I run:

– If ROS_MASTER_URI is local and no ROS master is running, then run roscore.
– Execute instructions in turtlebot.launch in comp3431/launch directory (for

syntax of launch fle see http://wiki.ros.org/roslaunch/XML)
● A weird mix of XML and shell scripting
● … let's look at comp3431/launch/turtlebot.launch
● node tag in includes/laser.launch executes rosrun with appropriate parameters.

● Note: the “_” - for private parameters.

$ rosrun hokuyo_node hokuyo_node _frame_id:=”/hokuyo” ...

$ roslaunch comp3431 turtlebot.launch

http://wiki.ros.org/roslaunch/XML

COMP3431 – Robot Software Architectures

ROS Tools and Programs – 2
● What is the diference between roslaunch and rosrun?
● What is going on when I run:

– If ROS_MASTER_URI is local and no ROS master is running, then run roscore.
– Execute instructions in turtlebot3_robot.launch in turtlebot3_bringup/launch

directory (for syntax of launch fle see http://wiki.ros.org/roslaunch/XML)
● A weird mix of XML and shell scripting
● … let's look at turtlebot3_bringup/launch/turtlebot3_robot.launch
● node tag in includes/lidar.launch executes rosrun with appropriate parameters.

● Note: the “_” - for private parameters.

$ rosrun hls_lfcd_lds_driver hlds_laser_publisher _frame_id:=”base_scan” ...

$ roslaunch turtlebot3_bringup turtlebot3_robot.launch

http://wiki.ros.org/roslaunch/XML

COMP3431 – Robot Software Architectures

ROS Tools and Programs – 3
● To debug the connections between nodes use:

– Visualises the node graph – and topic connections
● Rviz is the main visualisation tool for ROS:

– Provides plugins architecture for visualising diferent topics:
● Videos
● Map of environment and localised robot
● Point cloud within the map

● Example: https://www.youtube.com/watch?v=25nnJ64ED5Q

$ rqt_graph

$ rosrun rviz rviz

https://www.youtube.com/watch?v=25nnJ64ED5Q

COMP3431 – Robot Software Architectures

ROS Tools and Programs – 4
● Possible to save the data produced by topics for later analysis and playback:

– Creates a time stamped bag fle in the current directory.
– Warning: “-a” records all topics so will generate a lot of data.

● Often useful to only record only direct sensor inputs (e.g., laser scans and timing)
because the other topics will be generated from processing sensor data.

● To replay:

● Useful if you are testing diferent interchangeable node (e.g., mapping with gmapping,
hector SLAM, or diferent crosbot SLAM options).

● Note: SLAM (Simulataneous Localisation and Mapping) algorithms build a map while at
the same time localising. Very widely used in robotics.

$ rosbag record -a

$ rosbag play <bagfile>

COMP3431 – Robot Software Architectures

ROS Tools and Programs – 4
● Possible to save the data produced by topics for later analysis and playback:

– Creates a time stamped bag fle in the current directory.
– Warning: “-a” records all topics so will generate a lot of data.

● Often useful to only record only direct sensor inputs (e.g., laser scans and timing)
because the other topics will be generated from processing sensor data.

● To replay:

● Useful if you are testing diferent interchangeable node (e.g., mapping with gmapping,
hector SLAM, or diferent crosbot SLAM options).

● Note: SLAM (Simulataneous Localisation and Mapping) algorithms build a map while at
the same time localising. Very widely used in robotics.

$ rosbag record -a

$ rosbag play <bagfile>

COMP3431 – Robot Software Architectures

Many Different Sensors
● Laser Scanner
● Camera
● IR Cameras
● Depth Cameras
● Motor
● Pressure Sensor
● Compass
● Accelerometer
● IMU (Inertial Measurement Unit) – detects linear acceleration using

accelerometer and rotation using gyroscope
● Audio

ROS provides standardised data structures for some of these sensors.

COMP3431 – Robot Software Architectures

Laser Scanners
● A laser is rotated

through a plane
● Distance (& intensity)

measurements taken
periodically

● 180-270 degrees

sensor_msgs/LaserScan

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
float32 angle_min
float32 angle_max
float32 angle_increment
float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges
float32[] intensities

COMP3431 – Robot Software Architectures

Cameras
● Stream images
● Various encodings

used (RGB, Mono,
UYVY, Bayer)

● ROS has no
conversion functions

sensor_msgs/Image

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

#include <sensor_msgs/image_encodings.h>

COMP3431 – Robot Software Architectures

Depth Cameras
● Usually produce

Mono16 images
● Typically turned into

point clouds
● Depth measurements

can be radial or axial

sensor_msgs/PointCloud

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
geometry_msgs/Point32[] points
 float32 x
 float32 y
 float32 z
sensor_msgs/ChannelFloat32[]
channels
 string name
 float32[] values

COMP3431 – Robot Software Architectures

Motor Positions
● Many motors report

their positions
● Used to produce

transformations
between frames of
reference

sensor_msgs/JointState

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
string[] name
float64[] position
float64[] velocity
float64[] effort

COMP3431 – Robot Software Architectures

In-Class Examples
● Simple publisher and subscriber:

– Class member function callbacks.
– Use Timer to publish at a specifc rate.

