Exercise 1. Arrange the following functions in increasing order of growth: $n^\log n$, $(\log n)^n$, 2^n, 2^{2^n}, 2^{n^2}, $n!$, 1.01^n, 50^n, $2^{n/2}$, $2^{\sqrt{n}}$.

Exercise 2. Show that VERTEX COVER can be solved in polynomial time for graphs of maximum degree at most 2.

Exercise 3. A vertex cover C of a graph G is minimal if no strict subset of C is a vertex cover. Show that each graph has at most 2^k minimal vertex covers of size at most k. Furthermore, show that given G and k, all minimal vertex covers of G of size at most k can be enumerated in $2^k n^{O(1)}$ time.