COMP2111 Week 4 Term 1, 2019 Predicate Logic II

<ロ> (四) (四) (注) (注) (注) (三)

Summary of topics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Vocabulary

A **vocabulary** indicates what predicates, functions and constants we can use to build up our formulas. Very similar to C header files, or Java interfaces or *database schemas*.

A vocabulary V is a set of:

- Predicate "symbols" P, Q, ..., each with an assoicated arity (number of arguments)
- Function "symbols" f, g, ..., each with an assoicated *arity* (number of arguments)
- Constant "symbols" c, d, ... (also known as 0-arity functions)

Example

 $V = \{ \leq, +, 1 \}$ where \leq is a binary predicate symbol, + is a binary function symbol, and 1 is a constant symbol.

Vocabulary: example (databases)

Example

Δ

A database schema identifies the various tables, their attributes, and their attributes' types. For example:

Person	
Name:	String
Surname:	String
Address:	String

Employee	
ID:	int
Surname:	String

Tables *relate* a number of attributes The above schema would be represented by the vocabulary:

 $DB = \{ \mathsf{Person}, \mathsf{Employee} \}$

where Person is a ternary predicate symbol and Employee is a binary predicate symbol

Vocabulary: example (databases)

Example

A database schema identifies the various tables, their attributes, and their attributes' types. For example:

Person	
Name:	String
Surname:	String
Address:	String

Employee	
ID:	int
Surname:	String

Tables *relate* a number of attributes (over several domains). The above schema would be represented by the vocabulary:

 $DB = \{Person, Employee\}$

where Person is a ternary predicate symbol and Employee is a binary predicate symbol and isotring and isotreger are unary predicate symbols.

Vocabulary: example (databases)

Example

A database schema identifies the various tables, their attributes, and their attributes' types. For example:

Person	
Name:	String
Surname:	String
Address:	String

Employee	
ID:	int
Surname:	String

Tables *relate* a number of attributes (over several domains). The above schema would be represented by the vocabulary:

 $DB = \{Person, Employee, isString, isInteger\}$

where Person is a ternary predicate symbol and Employee is a binary predicate symbol and isString and isInteger are unary predicate symbols.

Terms

A term is defined recursively as follows:

- A variable is a term
- A constant symbol is a term
- If f is a function symbol with arity k, and t₁, ..., t_k are terms, then f(t₁, t₂,..., t_k) is a term.

NB

Terms will be interpreted as elements of the domain of discourse.

(ロ) (同) (E) (E) (E)

Terms: examples

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Example

Over $V = \{\leq, +, 1\}$, the following are all terms:

- X
- 1
- +(y,1)
- +(y, +(x, 1))

8

Formulas

A formula of Predicate Logic is defined recursively as follows:

- If P is a predicate symbol with arity k, and t₁, ..., t_k are terms, then P(t₁, t₂,..., t_k) is a formula
- If t_1 and t_2 are terms then $(t_1 = t_2)$ is a formula
- If φ, ψ are a formulas then the following are formulas:
 - $\neg \varphi$ • $(\varphi \land \psi)$ • $(\varphi \lor \psi)$
 - $(\varphi \to \psi)$ • $(\varphi \leftrightarrow \psi)$
 - $\forall x \varphi$
 - ∃xφ

NB

The base cases are known as **atomic** formulas: they play a similar role in the parse tree as propositional variables.

Formulas: examples

Example

Over $V = \{\leq, +, 1\}$, the following are all formulas:

- $\leq (x, y)$
- $\bullet \leq (1,1)$
- x = +(y, 1)
- $\bullet \leq (x,y) \rightarrow (x=+(y,1))$
- $\exists x(1 = +(1, 1))$
- $\forall x \forall y \leq (x, y) \rightarrow (x = +(y, 1))$

Parse trees

Free and Bound variables

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

Example In $\varphi = \forall x \exists z \exists x P(x, y, z)) \land Q(x)$: • z is bound to $\exists z$ • y is free • First x is bound to $\exists x$ • Second x is free

A formula with no free variables is a sentence.

It can be useful to have "access" to the free variables of a formula. So if x_1, \ldots, x_k are the free variables of φ , we may denote this as $\varphi(x_1, \ldots, x_k)$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Free and Bound variables

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

A formula with no free variables is a **sentence**.

It can be useful to have "access" to the free variables of a formula. So if x_1, \ldots, x_k are the free variables of φ , we may denote this as $\varphi(x_1, \ldots, x_k)$.

Free and Bound variables

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

Example

- $\ln \varphi(x,y) = \forall x \exists z \exists x P(x,y,z)) \land Q(x):$
 - z is bound to $\exists z$
 - y is free
 - First x is bound to $\exists x$
 - Second x is free

A formula with no free variables is a sentence.

It can be useful to have "access" to the free variables of a formula. So if x_1, \ldots, x_k are the free variables of φ , we may denote this as $\varphi(x_1, \ldots, x_k)$.

Formulas as predicates

Formulas can be viewed as complex predicates: predicates that are built from other predicates, either by

- Combining them using the boolean operators
- "Simplifying" using quantification and term substitutions (projection)

The free variables represent the arity of the predicate, hence the notation $\varphi(x_1, \ldots, x_k)$.

Note

Variable names matter: $\varphi(x)$ and $\varphi(y)$ are different formulas! However, they will be *interpreted* as the same predicate.

Formulas as predicates

Example

From binary predicates P and Q; and constant c we can build complex predicates like:

- $\alpha(w, x, y, z) = (P(x, w) \lor Q(y, z)) \land (w = y) \land (z = c)$
- $\beta(x, y, z) = (P(x, y) \lor Q(y, z)) \land (z = c)$
- $\gamma(x,y) = P(x,y) \lor Q(y,c)$
- $\delta(x) = \exists y P(x, y) \lor \exists y Q(y, c)$

NB

 α , β and γ are different predicates: α represents a 4-ary predicate, whereas β represents a 3-ary predicate and γ represents a binary predicate.

Formulas as predicates

Example

From binary predicates P and Q; and constant c we can build complex predicates like:

- $\alpha(w, x, y, z) = (P(x, w) \lor Q(y, z)) \land (w = y) \land (z = c)$
- $\beta(x, y, z) = (P(x, y) \lor Q(y, z)) \land (z = c)$

•
$$\gamma(x,y) = P(x,y) \lor Q(y,c)$$

•
$$\delta(x) = \exists y P(x, y) \lor \exists y Q(y, c)$$

NB

 α , β and γ are different predicates: α represents a 4-ary predicate, whereas β represents a 3-ary predicate and γ represents a binary predicate.

Substitution

If t is a term, φ a formula, and $x \in FV(\varphi)$, then the **substitution** of t for x in φ (denoted $\varphi[t/x]$) is the formula obtained by replacing every free occurrence of x with t.

Alternatively (if the free variables are listed), substituting t for x in $\varphi(x)$ can be written as $\varphi(t)$.

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Models

Predicate formulas are interpreted in Models.

Given a vocabulary V a model \mathcal{M} defines:

- A (non-empty) domain $D = \mathsf{Dom}(\mathcal{M})$
- For every predicate symbol $P \in V$ with arity k: a k-ary relation $P^{\mathcal{M}}$ on D
- For every function symbol $f \in V$ with arity k: a function $f^{\mathcal{M}}: D^k \to D$
- For every constant symbol $c \in V$: an element, $c^{\mathcal{M}}$ of D

In this course (hopefully)

Formulas have predicates; Models have relations.

Models: examples

Example

For the vocabulary $V = \{\leq, +, 1\}$ the following are models:

- \mathbb{N} with the standard definitions of \leq , +, and 1.
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$.
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w.

Models: example (databases)

Example

For the vocabulary $DB = \{Person, Employee, isString, isInteger\}$, the following **database** is a model:

Person		Employee		
Name	Surname	Address	ID	Surname
Arya	Stark	Winterfell	31415	Tyrell
Jon	Snow	Winterfell	27182	Lannister
Cersei	Lannister	King's Landing	16180	Targaryen

isString and isInteger are defined by what values are permitted in each of the columns (*sanitizing* the input).

Environments

Given a model \mathcal{M} , an **environment for** \mathcal{M} (or **lookup table**) is a function from the set of variables to $\text{Dom}(\mathcal{M})$.

Given an environment η , we denote by $\eta[x \mapsto c]$ the environment that agrees with η everywhere except possibly at x (where it has value c).

Environments

Given a model \mathcal{M} , an **environment for** \mathcal{M} (or **lookup table**) is a function from the set of variables to $\text{Dom}(\mathcal{M})$.

Given an environment η , we denote by $\eta[x \mapsto c]$ the environment that agrees with η everywhere except possibly at x (where it has value c).

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

Matation $\mathsf{Me} \text{ write } \mathcal{M}_{\mathcal{T}} p \coloneqq p \notin \{[p]\}_{\mathcal{T}}^{2} = \text{trans}$

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps terms to elements of $\mathsf{Dom}(\mathcal{M})$ recursively as follows:

•
$$\llbracket x \rrbracket_{\mathcal{M}}^{\eta} = \eta(x)$$

•
$$\llbracket c \rrbracket^{\eta}_{\mathcal{M}} = c^{\mathcal{N}}$$

•
$$\llbracket f(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = f^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta})$$

Notation

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

• $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \texttt{ holds.}$

- $\llbracket t_1 = t_2 \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true} \text{ if } \llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta} = \llbracket t_2 \rrbracket_{\mathcal{M}}^{\eta}$
- $\bullet \ \llbracket \forall x \varphi \rrbracket^\eta_{\mathcal{M}} = \texttt{true} \text{ if } \llbracket \varphi \rrbracket^{\eta [x \mapsto c]}_{\mathcal{M}} = \texttt{true} \text{ for all } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi
 rbrace_{\mathcal{M}}^{\eta} = \mathtt{true} ext{ if } \llbracket \varphi
 rbrace_{\mathcal{M}}^{\eta [x \mapsto c]} = \mathtt{true} ext{ for some } c \in \mathsf{Dom}(\mathcal{M})$
- [[φ]]^η_M defined in the same way as Propositional Logic for all other formulas φ. For example [[φ ∧ ψ]]^η_M = [[φ]]^η_M&&[[ψ]]^η_M

・ロン ・雪 と ・ ヨ と ・ ヨ

Notation

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \texttt{ holds.}$
- $\llbracket t_1 = t_2 \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } \llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta} = \llbracket t_2 \rrbracket_{\mathcal{M}}^{\eta}$
- $\llbracket \forall x \varphi \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true} \text{ if } \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta [x \mapsto c]} = \texttt{true} \text{ for all } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi
 rbrace_{\mathcal{M}}^{\eta} = \mathtt{true} ext{ if } \llbracket \varphi
 rbrace_{\mathcal{M}}^{\eta [x \mapsto c]} = \mathtt{true} ext{ for some } c \in \mathsf{Dom}(\mathcal{M})$
- [[φ]]^η_M defined in the same way as Propositional Logic for all other formulas φ. For example [[φ ∧ ψ]]^η_M = [[φ]]^η_M&&[[ψ]]^η_M

Notation

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \texttt{ holds.}$
- $\llbracket t_1 = t_2 \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } \llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta} = \llbracket t_2 \rrbracket_{\mathcal{M}}^{\eta}$
- $\llbracket \forall x \varphi \rrbracket^{\eta}_{\mathcal{M}} = \texttt{true if } \llbracket \varphi \rrbracket^{\eta[x \mapsto c]}_{\mathcal{M}} = \texttt{true for all } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi
 rbrace_{\mathcal{M}}^{\eta} = \mathtt{true} ext{ if } \llbracket \varphi
 rbrace_{\mathcal{M}}^{\eta [x \mapsto c]} = \mathtt{true} ext{ for some } c \in \mathsf{Dom}(\mathcal{M})$
- [[φ]]^η_M defined in the same way as Propositional Logic for all other formulas φ. For example [[φ ∧ ψ]]^η_M = [[φ]]^η_M&&[[ψ]]^η_M

Notation

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \texttt{ holds.}$
- $\llbracket t_1 = t_2 \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } \llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta} = \llbracket t_2 \rrbracket_{\mathcal{M}}^{\eta}$
- $\llbracket \forall x \varphi \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[x \mapsto c]} = \texttt{true for all } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi \rrbracket^{\eta}_{\mathcal{M}} = \texttt{true if } \llbracket \varphi \rrbracket^{\eta[x \mapsto c]}_{\mathcal{M}} = \texttt{true for some } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ defined in the same way as Propositional Logic for all other formulas φ . For example $\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{M}}^{\eta} = \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta} \& \& \llbracket \psi \rrbracket_{\mathcal{M}}^{\eta}$

Notation

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \texttt{ holds.}$
- $\llbracket t_1 = t_2 \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } \llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta} = \llbracket t_2 \rrbracket_{\mathcal{M}}^{\eta}$
- $\llbracket \forall x \varphi \rrbracket^{\eta}_{\mathcal{M}} = \texttt{true if } \llbracket \varphi \rrbracket^{\eta [x \mapsto c]}_{\mathcal{M}} = \texttt{true for all } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi \rrbracket^{\eta}_{\mathcal{M}} = \texttt{true if } \llbracket \varphi \rrbracket^{\eta[x \mapsto c]}_{\mathcal{M}} = \texttt{true for some } c \in \mathsf{Dom}(\mathcal{M})$
- [[φ]]^η_M defined in the same way as Propositional Logic for all other formulas φ. For example [[φ ∧ ψ]]^η_M = [[φ]]^η_M&&[[ψ]]^η_M

Notation

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \texttt{ holds.}$
- $\llbracket t_1 = t_2 \rrbracket_{\mathcal{M}}^{\eta} = \texttt{true if } \llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta} = \llbracket t_2 \rrbracket_{\mathcal{M}}^{\eta}$
- $\llbracket \forall x \varphi \rrbracket^{\eta}_{\mathcal{M}} = \texttt{true if } \llbracket \varphi \rrbracket^{\eta [x \mapsto c]}_{\mathcal{M}} = \texttt{true for all } c \in \mathsf{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi \rrbracket^{\eta}_{\mathcal{M}} = \texttt{true if } \llbracket \varphi \rrbracket^{\eta[x \mapsto c]}_{\mathcal{M}} = \texttt{true for some } c \in \mathsf{Dom}(\mathcal{M})$
- [[φ]]^η_M defined in the same way as Propositional Logic for all other formulas φ. For example [[φ ∧ ψ]]^η_M = [[φ]]^η_M&&[[ψ]]^η_M

Notation
$$\forall x \forall y ((y = x + 1) \rightarrow (x \leq y))$$

- $\mathbb N$ with the standard definitions of \leq , +, and 1: true
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$:
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w.

$$\forall x \forall y ((y = x + 1) \rightarrow (x \leq y))$$

- \mathbb{N} with the standard definitions of \leq , +, and 1: true
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$:
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w.

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\mathbb N$ with the standard definitions of \leq , +, and 1: true
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$: false
- The directed graph G = (V, E) shown below with ≤= E; and v + w defined to be w.

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\mathbb N$ with the standard definitions of \leq , +, and 1: true
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$: false
- The directed graph G = (V, E) shown below with ≤= E; and v + w defined to be w.

Example

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\mathbb N$ with the standard definitions of \leq , +, and 1: true
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$: false
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w.

true

Example

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\mathbb N$ with the standard definitions of \leq , +, and 1: true
- $\{0, 1, 2, 3, 4\}$ with the standard definition of \leq and 1, and m + n defined as $m + n \pmod{5}$: false
- The directed graph G = (V, E) shown below with $\leq = E$; and v + w defined to be w.

true

Why separate the environment from the model? In the definition of $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$, η is only used to define values for the free variables. In particular, if φ is a sentence then $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ is independent of η .

Define $[\![\cdot]\!]_{\mathcal{M}}$ by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

 $\llbracket \varphi(x_1, x_2, \ldots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}} (x_1, x_2, \ldots, x_n)$

where $\llbracket \varphi \rrbracket_{\mathcal{M}} : \operatorname{Dom}(\mathcal{M})^n \to \mathbb{B}$; that is, $\llbracket \varphi \rrbracket_{\mathcal{M}}$ is an *n*-ary relation on $\operatorname{Dom}(\mathcal{M})$.

In the definition of $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$, η is only used to define values for the free variables. In particular, if φ is a sentence then $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ is independent of η .

Define $[\![\cdot]\!]_{\mathcal{M}}$ by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

 $\llbracket \varphi(x_1, x_2, \dots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}} (x_1, x_2, \dots, x_n)$ where $\llbracket \varphi \rrbracket_{\mathcal{M}} : \operatorname{Dom}(\mathcal{M})^n \to \mathbb{B}$; that is, $\llbracket \varphi \rrbracket_{\mathcal{M}}$ is an *n*-ary relation on $\operatorname{Dom}(\mathcal{M})$.

In the definition of $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$, η is only used to define values for the free variables. In particular, if φ is a sentence then $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ is independent of η .

Define $[\![\cdot]\!]_{\mathcal{M}}$ by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

 $\llbracket \varphi(x_1, x_2, \dots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}} (x_1, x_2, \dots, x_n)$ where $\llbracket \varphi \rrbracket_{\mathcal{M}} : \operatorname{Dom}(\mathcal{M})^n \to \mathbb{B}$; that is, $\llbracket \varphi \rrbracket_{\mathcal{M}}$ is an *n*-ary relation on $\operatorname{Dom}(\mathcal{M})$.

In the definition of $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$, η is only used to define values for the free variables. In particular, if φ is a sentence then $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ is independent of η .

Define $[\![\cdot]\!]_{\mathcal{M}}$ by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

 $\llbracket \varphi(x_1, x_2, \dots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}} (x_1, x_2, \dots, x_n)$ where $\llbracket \varphi \rrbracket_{\mathcal{M}} : \text{Dom}(\mathcal{M})^n \to \mathbb{B}$; that is, $\llbracket \varphi \rrbracket_{\mathcal{M}}$ is an *n*-ary relation on $\text{Dom}(\mathcal{M})$.

In the definition of $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$, η is only used to define values for the free variables. In particular, if φ is a sentence then $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ is independent of η .

Define $[\![\cdot]\!]_{\mathcal{M}}$ by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

 $\llbracket \varphi(x_1, x_2, \dots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}} (x_1, x_2, \dots, x_n)$ where $\llbracket \varphi \rrbracket_{\mathcal{M}} : \text{Dom}(\mathcal{M})^n \to \mathbb{B}$; that is, $\llbracket \varphi \rrbracket_{\mathcal{M}}$ is an *n*-ary relation on $\text{Dom}(\mathcal{M})$.

$$\varphi(x_1, x_2, \dots, x_n)$$
 an *n*-ary predicate
 $[\![\varphi]\!]_{\mathcal{M}}$ an *n*-ary relation on $\text{Dom}(\mathcal{M})$

In the definition of $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$, η is only used to define values for the free variables. In particular, if φ is a sentence then $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ is independent of η .

Define $[\![\cdot]\!]_{\mathcal{M}}$ by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

 $\llbracket \varphi(x_1, x_2, \ldots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}}(x_1, x_2, \ldots, x_n)$

where $\llbracket \varphi \rrbracket_{\mathcal{M}} : \operatorname{Dom}(\mathcal{M})^n \to \mathbb{B}$; that is, $\llbracket \varphi \rrbracket_{\mathcal{M}}$ is an *n*-ary relation on $\operatorname{Dom}(\mathcal{M})$.

$$\varphi(x_1, x_2, \dots, x_n)$$
 an *n*-ary predicate
 \Downarrow
 $\llbracket \varphi \rrbracket_{\mathcal{M}}$ an *n*-ary relation on $\mathsf{Dom}(\mathcal{M})$

- Vocabulary: database schema
- Formulas: queries (φ)
- Models: databases (D)
- Interpretation: *[ϕ]*_D is a relation on Dom(D), i.e. a (derived) table in D
- Environment:
- [[φ]]^η_D: Success/fail outcome of looking up a specific entry in a query result on D.

- Vocabulary: database schema
- Formulas: queries (φ)
- Models: databases (\mathcal{D})
- Interpretation: $\llbracket \varphi \rrbracket_{\mathcal{D}}$ is a relation on $\text{Dom}(\mathcal{D})$, i.e. a (derived) table in \mathcal{D}
- Environment:
- [[φ]]^η_D: Success/fail outcome of looking up a specific entry in a query result on D.

- Vocabulary: database schema
- Formulas: queries (φ)
- Models: databases (\mathcal{D})
- Interpretation: $\llbracket \varphi \rrbracket_{\mathcal{D}}$ is a relation on $\text{Dom}(\mathcal{D})$, i.e. a (derived) table in \mathcal{D}
- Environment: "looks up" an entry in a (derived) table and returns whether the lookup was successful
- [[φ]]^η_D: Success/fail outcome of looking up a specific entry in a query result on D.

- Vocabulary: database schema
- Formulas: queries (φ)
- Models: databases (D)
- Interpretation: [[φ]]_D is a relation on Dom(D), i.e. a (derived) table in D
- Environment: "looks up" an entry in a (derived) table and returns whether the lookup was successful
- [[φ]]^η_D: Success/fail outcome of looking up a specific entry in a query result on D.

- Vocabulary: database schema
- Formulas: queries (φ)
- Models: databases (D)
- Interpretation: $\llbracket \varphi \rrbracket_{\mathcal{D}}$ is a relation on $\text{Dom}(\mathcal{D})$, i.e. a (derived) table in \mathcal{D}
- Environment: "looks up" an entry in a (derived) table and returns whether the lookup was successful
- $\llbracket \varphi \rrbracket_{\mathcal{D}}^{\eta}$: Success/fail outcome of looking up a specific entry in a query result on \mathcal{D} .

Satisfiability, truth, validity

A formula φ of predicate logic is:

- satisfiable if there is some model *M* and some environment η such that *M*, η ⊨ φ. That is, there is some interpretation (*M*, η) that satisfies φ.
- true in a model \mathcal{M} if for all environments η we have $\mathcal{M}, \eta \models \varphi$.
- a logical validity if it is true in all models.

NB

For sentences the first two definitions coincide.

Example

The sentence $orall x orall y((y=x+1) o (x\leq y))$ is satisfiable but not a logical validity.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Satisfiability, truth, validity

A formula φ of predicate logic is:

- satisfiable if there is some model *M* and some environment η such that *M*, η ⊨ φ. That is, there is some interpretation (*M*, η) that satisfies φ.
- true in a model \mathcal{M} if for all environments η we have $\mathcal{M}, \eta \models \varphi$.
- a logical validity if it is true in all models.

NB

For sentences the first two definitions coincide.

Example

The sentence $\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$ is satisfiable but not a logical validity.

Entailment, Logical equivalence

- A theory *T* entails a formula φ, *T* ⊨ φ, if φ is satisfied by any interpretation that satisfies all formulas in *T*.
- φ is logically equivalent to ψ , $\varphi \equiv \psi$, if $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta} = \llbracket \psi \rrbracket_{\mathcal{M}}^{\eta}$ for all interpretations (\mathcal{M}, η) .

Theorem

- $\varphi_1, \ldots, \varphi_n \models \psi$ if, and only if, $(\varphi_1 \land \cdots \land \varphi_n) \rightarrow \psi$ is a logical validity.
- $\varphi \equiv \psi$ if, and only if, $\varphi \leftrightarrow \psi$ is a logical validity.

Entailment, Logical equivalence

- A theory *T* entails a formula φ, *T* ⊨ φ, if φ is satisfied by any interpretation that satisfies all formulas in *T*.
- φ is logically equivalent to ψ , $\varphi \equiv \psi$, if $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta} = \llbracket \psi \rrbracket_{\mathcal{M}}^{\eta}$ for all interpretations (\mathcal{M}, η) .

Theorem

- $\varphi_1, \ldots, \varphi_n \models \psi$ if, and only if, $(\varphi_1 \land \cdots \land \varphi_n) \rightarrow \psi$ is a logical validity.
- $\varphi \equiv \psi$ if, and only if, $\varphi \leftrightarrow \psi$ is a logical validity.

Summary of topics

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Motivation

Demonstrating satisfiability (and invalidity) is easy: just provide an interpretation which does (not) satisfy the formula. Note: *finding* such an interpretation is a different question.

・ロト ・回 ト ・ヨト ・ヨト ・ヨ

How can you show a formula/entailment is valid?

Answer: Find a proof in a proof system that is sound.

Motivation

Demonstrating satisfiability (and invalidity) is easy: just provide an interpretation which does (not) satisfy the formula. Note: *finding* such an interpretation is a different question.

(ロ) (同) (三) (三) (三) (0,0)

How can you show a formula/entailment is valid?

Answer: Find a proof in a proof system that is sound.

Natural deduction for Predicate Logic

Inference rules for Propositional Logic + seven rules for quantifiers and equality $\label{eq:constraint}$

Operator	Introduction	Elimination		
\forall	∀-I	∀-E		
Э	3-I	∃-E		
=	=-I	=-E1 =-E2		

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

Arbitrary variables

Formulas of Predicate Logic involve variables. Unsurprisingly, the new inference rules involve manipulating variables.

A variable is **arbitrary** if it does not occur (as a free variable) in any undischarged assumption.

Intuitively: an arbitrary variable can be assigned any element of the domain and the formula will still hold.

\forall Introduction and Elimination

∀-elimination:

 $\frac{\forall x A(x)}{A(c)} (\forall -\mathsf{E})$

 \forall -introduction:

(c is arbitrary) (x not free in A(c)) $A(c) \qquad (c \text{ not free in } A(x))$ $\forall x A(x)$ $(\forall -1)$

\forall Introduction and Elimination

Line	Premises	Formula	Rule	References
1		$\forall x \forall y \ P(x,y)$	Premise	

Line	Premises	Formula	Rule	References
1		$\forall x \forall y \ P(x,y)$	Premise	
2	1	$\forall y \ P(a, y)$	∀-E	1

Line	Premises	Formula	Rule	References
1		$\forall x \forall y \ P(x,y)$	Premise	
2	1	$\forall y P(a, y)$	∀-E	1
3	1	P(a, b)	∀-E	2

Line	Premises	Formula	Rule	References
1		$\forall x \forall y \ P(x,y)$	Premise	
2	1	$\forall y P(a, y)$	∀-E	1
3	1	P(a, b)	∀-E	2
4	1	$\forall x P(x, b)$	∀-1	3

Line	Premises	Formula	Rule	References
1		$\forall x \forall y \ P(x,y)$	Premise	
2	1	$\forall y P(a, y)$	∀-E	1
3	1	P(a, b)	∀-E	2
4	1	$\forall x P(x, b)$	∀-I	3
5	1	$\forall y \forall x P(x, y)$	∀-1	4

Line	Premises	Formula	Rule	References
1		$\forall x \forall y P(x, y)$	Premise	
2	1	$\forall y \ P(a, y)$	∀-E	1
3	1	P(a, b)	∀-E	2
4	1	$\forall x P(x, b)$	∀-I	3
5	1	$\forall y \forall x P(x,y)$	∀-I	4

∃ Introduction and Elimination

∃ Introduction and Elimination

Prove: $\exists x \exists y \ P(x, y) \vdash \exists y \exists x \ P(x, y)$

1. ∃x∃y P(x, y)	
2. ∃y P(a,y)	
3. P(a,b)	
4. ∃× P(×, b)	
5. ∃y∃x P(x, y)	
6. ∃y∃x P(x, y)	
7. ∃y∃x P(x,y)	∃-E: 1, 2-6 ∢⊡≻ ∢@≻ ∢≅≻ ∢≅≻ ≅ ೨९९

Prove: $\exists x \exists y P(x, y) \vdash \exists y \exists x P(x, y)$

 1. ∃x∃y P(x, y)

 2. ∃y P(a, y)

 3. P(a, b)

 4. ∃x P(x, b)

 5. ∃y∃x P(x, y)

 ∃-1: 3

 6. ∃y∃x P(x, y)

 ∃-E: 2, 3–5

 7. ∃y∃x P(x,y) ∃-E: 1, 2–6

Prove: $\exists x \exists y P(x, y) \vdash \exists y \exists x P(x, y)$

 $\begin{bmatrix} 1. \exists x \exists y P(x, y) \\ 2. \exists y P(a, y) \\ 3. P(a, b) \\ 4. \exists x P(x, b) \\ 5. \exists y \exists x P(x, y) \\ 5. \exists y \exists x P(x, y) \\ 3. P(x, y) \\ 4. \exists x P(x, b) \\ 5. \exists y \exists x P(x, y) \\ 3. P(x, y) \\ 4. P(x, y) \\ 3. P(x, y) \\ 4. P(x, y) \\ 4. P(x, y) \\ 4. P(x, y) \\ 5. P(x, y$ ◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Prove: $\exists x \exists y P(x, y) \vdash \exists y \exists x P(x, y)$

1. $\exists x \exists y P(x, y)$ 2. $\exists y P(a, y)$ 3. P(a, b)4. $\exists x P(x, b)$ 5. $\exists y \exists x P(x, y)$ 6. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 3. $\exists x = 1: 3$ 5. $\exists y \exists x P(x, y)$ 5. $\exists x P(x$ ◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Prove: $\exists x \exists y \ P(x, y) \vdash \exists y \exists x \ P(x, y)$

1. $\exists x \exists y P(x, y)$ 2. $\exists y P(a, y)$ $\begin{bmatrix} 3. P(a, b) \\ - \\ 4. \exists x P(x, b) & \exists -1: 3 \\ 5. \exists y \exists x P(x, y) & \exists -1: 4 \end{bmatrix}$ I 6. ∃y∃x P(x, y) ∃-E: 2, 3–5 ◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Prove: $\exists x \exists y P(x, y) \vdash \exists y \exists x P(x, y)$

1. $\exists x \exists y P(x, y)$ 2. $\exists y P(a, y)$ $\begin{bmatrix} 3. P(a, b) \\ 4. \exists x P(x, b) & \exists -1: 3 \\ 5. \exists y \exists x P(x, y) & \exists -1: 4 \end{bmatrix}$ 6. ∃y∃x P(x,y) ∃-E: 2, 3–5 ◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Prove: $\exists x \exists y P(x, y) \vdash \exists y \exists x P(x, y)$

1. $\exists x \exists y P(x, y)$ | 2. ∃y P(a, y) 3. P(a,b)
 $-4. \exists x P(x, b)$ $\exists -1: 3$
 $5. \exists y \exists x P(x, y)$ $\exists -1: 4$
6. ∃y∃x P(x, y) ∃-E: 2, 3–5 7. ∃y∃x P(x,y) ∃-E: 1, 2–6 ◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

= Introduction and Elimination

=-introduction:
$$\overline{a = a}$$
 (=-I)

=-elimination (1):
$$\frac{a=b}{A(a)} (=-E1)$$

$$\frac{a=b}{A(a)} \frac{A(b)}{(=-E1)}$$

・ロト ・回ト ・ヨト ・ヨー うへぐ

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

1. a = b

 2. a = a
 =-1

 3. b = a
 =-E1: 1,2

 4. (a = b)
$$\rightarrow$$
 (b = a)
 \rightarrow -I: 1-3

 5. $\forall y (a = y) \rightarrow (y = a)$
 \forall -I: 4

 6. $\forall x \forall y (x = y) \rightarrow (y = x)$
 \forall -I: 5

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

1. a = b2. a = a3. b = a4. $(a = b) \rightarrow (b = a)$ 5. $\forall y (a = y) \rightarrow (y = a)$ 6. $\forall x \forall y (x = y) \rightarrow (y = x)$

(本部) (本語) (本語) (注語)

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

 $\begin{bmatrix} 1. a = b \\ 2. a = a \\ 3. b = a \end{bmatrix}$ $4. (a = b) \rightarrow (b = a)$ $5. \forall y (a = y) \rightarrow (y = a)$ $6. \forall x \forall y (x = y) \rightarrow (y = x)$ =-1=-E1: 1,2 \rightarrow -I: 1–3

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

1. a = b2. a = a3. b = a4. $(a = b) \rightarrow (b = a)$ 5. $\forall y (a = y) \rightarrow (y = a)$ 6. $\forall x \forall y (x = y) \rightarrow (y = x)$ =-1=-E1: 1,2 \rightarrow -I: 1–3 ∀-I: 4

◆□ → ◆□ → ◆ □ → ◆ □ → □ □ →

Prove:
$$\vdash \forall x \forall y (x = y) \rightarrow (y = x)$$

 $\begin{bmatrix} 1. a = b \\ 2. a = a \\ 3. b = a \\ 4. (a = b) \rightarrow (b = a) \\ 5. \forall y (a = y) \rightarrow (y = a) \\ 6. \forall x \forall y (x = y) \rightarrow (y = x) \end{bmatrix}$ =-1=-E1: 1,2 \rightarrow -I: 1–3 ∀-I: 4 ∀-I: 5

回り くほり くほり ……ほ

Soundness and completeness

Theorem

Natural deduction is sound and complete for Predicate Logic:

 $T \vdash \varphi$ if, and only if, $T \models \varphi$

Use proofs to show validity

Use countermodels to show unprovability

Soundness and completeness

Theorem

Natural deduction is sound and complete for Predicate Logic:

 $T \vdash \varphi$ if, and only if, $T \models \varphi$

• Use proofs to show validity

Use countermodels to show unprovability

Soundness and completeness

Theorem

Natural deduction is sound and complete for Predicate Logic:

 $T \vdash \varphi$ if, and only if, $T \models \varphi$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

- Use proofs to show validity
- Use countermodels to show unprovability