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Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic
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Vocabulary

A vocabulary indicates what predicates, functions and constants
we can use to build up our formulas. Very similar to C header files,
or Java interfaces or database schemas.

A vocabulary V is a set of:

Predicate “symbols” P, Q, . . . , each with an assoicated arity
(number of arguments)

Function “symbols” f, g, . . . , each with an assoicated arity
(number of arguments)

Constant “symbols” c, d, . . . (also known as 0-arity functions)

Example

V = {≤,+, 1} where ≤ is a binary predicate symbol, + is a binary
function symbol, and 1 is a constant symbol.
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Vocabulary: example (databases)
Example

A database schema identifies the various tables, their attributes,
and their attributes’ types. For example:

Person Employee
Name: String ID: int
Surname: String Surname: String
Address: String

Tables relate a number of attributes (over several domains).
The above schema would be represented by the vocabulary:

DB = {Person,Employee}

where Person is a ternary predicate symbol and Employee is a
binary predicate symbol and isString and isInteger are unary
predicate symbols.
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Terms

A term is defined recursively as follows:

A variable is a term

A constant symbol is a term

If f is a function symbol with arity k , and t1, . . ., tk are
terms, then f (t1, t2, . . . , tk) is a term.

NB

Terms will be interpreted as elements of the domain of discourse.
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Terms: examples

Example

Over V = {≤,+, 1}, the following are all terms:

x

1

+(y , 1)

+(y ,+(x , 1))
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Formulas
A formula of Predicate Logic is defined recursively as follows:

If P is a predicate symbol with arity k , and t1, . . ., tk are
terms, then P(t1, t2, . . . , tk) is a formula

If t1 and t2 are terms then (t1 = t2) is a formula

If ϕ,ψ are a formulas then the following are formulas:

¬ϕ
(ϕ ∧ ψ)
(ϕ ∨ ψ)
(ϕ→ ψ)
(ϕ↔ ψ)
∀xϕ
∃xϕ

NB

The base cases are known as atomic formulas: they play a similar
role in the parse tree as propositional variables.
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Formulas: examples

Example

Over V = {≤,+, 1}, the following are all formulas:

≤ (x , y)

≤ (1, 1)

x = +(y , 1)

≤ (x , y)→ (x = +(y , 1))

∃x(1 = +(1, 1))

∀x∀y ≤ (x , y)→ (x = +(y , 1))

10



Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person,Employee, isString, isInteger}:

Select *

from Person

Person(x , y , z)
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Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person,Employee, isString, isInteger,Arya}:

Select *

from Person

where Person.name = "Arya"

Person(x , y , z) ∧ (x = Arya)
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Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person,Employee, isString, isInteger,Arya}:

Select Person.surname,Person.address

from Person

where Person.name = "Arya"

Person(Arya, y , z)
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Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person,Employee, isString, isInteger,Arya}:

Select *

from Person inner join Employee

on Person.surname = Employee.surname

Person(x , y , z) ∨ Employee(w , y)
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Parse trees

Example

∀x

∀x∀y((y = x + 1)→ (x ≤ y))

∀y

→

= ≤

y + x y

1x
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Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In ϕ = ∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

It can be useful to have “access” to the free variables of a formula.
So if x1, . . . , xk are the free variables of ϕ, we may denote this as
ϕ(x1, . . . , xk).
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Formulas as predicates

Formulas can be viewed as complex predicates: predicates that are
built from other predicates, either by

Combining them using the boolean operators

“Simplifying” using quantification and term substitutions
(projection)

The free variables represent the arity of the predicate, hence the
notation ϕ(x1, . . . , xk).

Note

Variable names matter: ϕ(x) and ϕ(y) are different formulas!
However, they will be interpreted as the same predicate.
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Formulas as predicates

Example

From binary predicates P and Q; and constant c we can build
complex predicates like:

α(w , x , y , z) = (P(x ,w) ∨ Q(y , z)) ∧ (w = y) ∧ (z = c)

β(x , y , z) = (P(x , y) ∨ Q(y , z)) ∧ (z = c)

γ(x , y) = P(x , y) ∨ Q(y , c)

δ(x) = ∃yP(x , y) ∨ ∃yQ(y , c)

NB

α, β and γ are different predicates: α represents a 4-ary predicate,
whereas β represents a 3-ary predicate and γ represents a binary
predicate.
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Substitution

If t is a term, ϕ a formula, and x ∈ FV (ϕ), then the substitution
of t for x in ϕ (denoted ϕ[t/x ]) is the formula obtained by
replacing every free occurrence of x with t.

Alternatively (if the free variables are listed), substituting t for x in
ϕ(x) can be written as ϕ(t).
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Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic
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Models

Predicate formulas are interpreted in Models.

Given a vocabulary V a model M defines:

A (non-empty) domain D = Dom(M)

For every predicate symbol P ∈ V with arity k : a k-ary
relation PM on D

For every function symbol f ∈ V with arity k: a function
f M : Dk → D

For every constant symbol c ∈ V : an element, cM of D

In this course (hopefully)

Formulas have predicates; Models have relations.
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Models: examples

Example

For the vocabulary V = {≤,+, 1} the following are models:

N with the standard definitions of ≤, +, and 1.

{0, 1, 2, 3, 4} with the standard definition of ≤ and 1, and
m + n defined as m + n (mod 5).

The directed graph G = (V ,E ) shown below with ≤= E ; and
v + w defined to be w .

1

2

3

4
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Models: example (databases)

Example

For the vocabulary DB = {Person,Employee, isString, isInteger},
the following database is a model:

Person Employee
Name Surname Address ID Surname
Arya Stark Winterfell 31415 Tyrell
Jon Snow Winterfell 27182 Lannister

Cersei Lannister King’s Landing 16180 Targaryen

isString and isInteger are defined by what values are permitted in
each of the columns (sanitizing the input).
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Environments

Given a model M, an environment for M (or lookup table) is a
function from the set of variables to Dom(M).

Given an environment η, we denote by η[x 7→ c] the environment
that agrees with η everywhere except possibly at x (where it has
value c).
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Interpretations
An interpretation is a pair (M, η) where M is a model and η is
an environment.

Notation

We write M, η |= ϕ if [[ϕ]]ηM = true
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Interpretations

An interpretation is a pair (M, η) where M is a model and η is
an environment.

An interpretation (M, η) maps terms to elements of Dom(M) re-
cursively as follows:

[[x ]]ηM = η(x)

[[c]]ηM = cM

[[f (t1, . . . , tk)]]ηM = f M([[t1]]ηM, . . . , [[tk ]]ηM)

Notation

We write M, η |= ϕ if [[ϕ]]ηM = true

30



Interpretations

An interpretation is a pair (M, η) where M is a model and η is
an environment.

An interpretation (M, η) maps formulas to B recursively as follows:

[[P(t1, . . . , tk)]]ηM = true if PM([[t1]]ηM, . . . , [[tk ]]ηM) holds.

[[t1 = t2]]ηM = true if [[t1]]ηM = [[t2]]ηM

[[∀xϕ]]ηM = true if [[ϕ]]
η[x 7→c]
M = true for all c ∈ Dom(M)

[[∃xϕ]]ηM = true if [[ϕ]]
η[x 7→c]
M = true for some c ∈ Dom(M)

[[ϕ]]ηM defined in the same way as Propositional Logic for all
other formulas ϕ. For example [[ϕ ∧ ψ]]ηM = [[ϕ]]ηM&&[[ψ]]ηM

Notation

We write M, η |= ϕ if [[ϕ]]ηM = true
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Interpretations
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Interpretations: examples

Example

∀x∀y((y = x + 1)→ (x ≤ y))

N with the standard definitions of ≤, +, and 1: true

{0, 1, 2, 3, 4} with the standard definition of ≤ and 1, and
m + n defined as m + n (mod 5): false

The directed graph G = (V ,E ) shown below with ≤= E ; and
v + w defined to be w .

1

2

3

4

true
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Why separate the environment from the model?
In the definition of [[ϕ]]ηM, η is only used to define values for the
free variables. In particular, if ϕ is a sentence then [[ϕ]]ηM is
independent of η.

Define [[·]]M by “delaying” the assigning of values to free variables,
and propagating them out. That is, define:

[[ϕ(x1, x2, . . . , xn)]]M = [[ϕ]]M(x1, x2, . . . , xn)

where [[ϕ]]M : Dom(M)n → B; that is, [[ϕ]]M is an n-ary relation
on Dom(M).

This matches the perspective of formulas as complex predicates:

ϕ(x1, x2, . . . , xn) an n-ary predicate
⇓

[[ϕ]]M an n-ary relation on Dom(M)
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Interpretations: example (databases)

Example

Vocabulary: database schema

Formulas: queries (ϕ)

Models: databases (D)

Interpretation: [[ϕ]]D is a relation on Dom(D), i.e. a (derived)
table in D
Environment: “looks up” an entry in a (derived) table and
returns whether the lookup was successful

[[ϕ]]ηD: Success/fail outcome of looking up a specific entry in a
query result on D.
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Satisfiability, truth, validity

A formula ϕ of predicate logic is:

satisfiable if there is some model M and some environment η
such that M, η |= ϕ. That is, there is some interpretation
(M, η) that satisfies ϕ.

true in a model M if for all environments η we have
M, η |= ϕ.

a logical validity if it is true in all models.

NB

For sentences the first two definitions coincide.

Example

The sentence ∀x∀y((y = x + 1)→ (x ≤ y)) is satisfiable but not a
logical validity.
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Entailment, Logical equivalence

A theory T entails a formula ϕ, T |= ϕ, if ϕ is satisfied by
any interpretation that satisfies all formulas in T .

ϕ is logically equivalent to ψ, ϕ ≡ ψ, if [[ϕ]]ηM = [[ψ]]ηM for
all interpretations (M, η).

Theorem

ϕ1, . . . , ϕn |= ψ if, and only if, (ϕ1 ∧ · · · ∧ ϕn)→ ψ is a
logical validity.

ϕ ≡ ψ if, and only if, ϕ↔ ψ is a logical validity.
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Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic
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Motivation

Demonstrating satisfiability (and invalidity) is easy: just provide an
interpretation which does (not) satisfy the formula. Note: finding
such an interpretation is a different question.

How can you show a formula/entailment is valid?

Answer: Find a proof in a proof system that is sound.
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Natural deduction for Predicate Logic

Inference rules for Propositional Logic + seven rules for quantifiers
and equality

Operator Introduction Elimination
∀ ∀-I ∀-E
∃ ∃-I ∃-E
= =-I =-E1 =-E2

61



Arbitrary variables

Formulas of Predicate Logic involve variables. Unsurprisingly, the
new inference rules involve manipulating variables.

A variable is arbitrary if it does not occur (as a free variable) in
any undischarged assumption.

Intuitively: an arbitrary variable can be assigned any element of
the domain and the formula will still hold.
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∀ Introduction and Elimination

∀-elimination:
∀xA(x)

(∀-E)
A(c)

∀-introduction:
A(c)

(c is arbitrary)

(x not free in A(c))

(c not free in A(x))
(∀-I)

∀xA(x)
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Proof example

Prove: ∀x∀y P(x , y) ` ∀y∀x P(x , y)

Line Premises Formula Rule References
1 ∀x∀y P(x , y) Premise

2 1 ∀y P(a, y) ∀-E 1

3 1 P(a, b) ∀-E 2

4 1 ∀x P(x , b) ∀-I 3

5 1 ∀y∀x P(x , y) ∀-I 4
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∃ Introduction and Elimination

∃-introduction:
A(c) (x not free in A)

(∃-I)
∃xA(x)

∃-elimination:

∃xA(x)

[A(c)]

...
B

(x not free in A(c))

(c is arbitrary)

(c not free in B)
(∃-E)

B
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Proof example (Fitch)

Prove: ∃x∃y P(x , y) ` ∃y∃x P(x , y)

1. ∃x∃y P(x, y)

2. ∃y P(a, y)

3. P(a, b)

4. ∃x P(x, b) ∃-I: 3

5. ∃y∃x P(x, y) ∃-I: 4

6. ∃y∃x P(x, y) ∃-E: 2, 3–5

7. ∃y∃x P(x, y) ∃-E: 1, 2–6
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= Introduction and Elimination

=-introduction:
(=-I)a = a

=-elimination (1):
a = b A(a)

(=-E1)
A(b)

=-elimination (2): a = b A(b)
(=-E1)

A(a)
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Proof example (Fitch)

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5
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Soundness and completeness

Theorem

Natural deduction is sound and complete for Predicate Logic:

T ` ϕ if, and only if, T |= ϕ

Use proofs to show validity

Use countermodels to show unprovability
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