COMP2111 Week 4

Term 1, 2019
Predicate Logic Il



Summary of topics

@ Re-introduction to Predicate Logic
@ Syntax of Predicate Logic
@ Semantics of Predicate Logic

@ Natural Deduction for Predicate Logic



Vocabulary

A vocabulary indicates what predicates, and constants
we can use to build up our formulas. Very similar to C header files,
or Java interfaces or database schemas.

A vocabulary V is a set of:

@ Predicate “symbols” P, Q, ..., each with an assoicated arity
(number of arguments)
@ Function “symbols” f, g, ..., each with an assoicated arity
(number of arguments)
e Constant “symbols” c, d, ... (also known as O-arity functions)
Example

V = {<,+,1} where < is a binary predicate symbol, + is a binary
function symbol, and 1 is a constant symbol.




Vocabulary: example (databases)

Example
A database schema identifies the various tables, their attributes,
and their attributes’ types. For example:

Person Employee

Name: String ID: int
Surname: String Surname: String
Address:  String




Vocabulary: example (databases)

Example

A database schema identifies the various tables, their attributes,
and their attributes’ types. For example:

Person Employee

Name: String ID: int
Surname: String Surname: String
Address:  String

Tables relate a number of attributes
The above schema would be represented by the vocabulary:

DB = {Person, Employee}

where Person is a ternary predicate symbol and Employee is a
binary predicate symbol




Vocabulary: example (databases)

Example

A database schema identifies the various tables, their attributes,
and their attributes’ types. For example:

Person Employee

Name: String ID: int
Surname: String Surname: String
Address:  String

Tables relate a number of attributes (over several domains).
The above schema would be represented by the vocabulary:

DB = {Person, Employee, isString, isInteger}

where Person is a ternary predicate symbol and Employee is a
binary predicate symbol and isString and isInteger are unary
predicate symbols.




Terms

A term is defined recursively as follows:
@ A variable is a term
@ A constant symbol is a term

o If f is a function symbol with arity k, and ti, ..., tx are
terms, then f(t1, to,..., tx) is a term.

NB
Terms will be interpreted as elements of the domain of discourse. J




Terms: examples

Example
Over V = {<, +,1}, the following are all terms:
® x
o1
° +(y,1)
o +(y,+(x,1))




Formulas
A formula of Predicate Logic is defined recursively as follows:

o If P is a predicate symbol with arity k, and t, ..., tx are
terms, then P(t1, to,..., tx) is a formula

o If t; and t, are terms then (t; = tp) is a formula
o If i, 1 are a formulas then the following are formulas:
e "y
o (pN1)
° (pV)
° (p =)
° (pe )
° Vxgp
e dxp

NB

The base cases are known as atomic formulas: they play a similar
role in the parse tree as propositional variables.




Formulas: examples

Example

Over V = {<,+, 1}, the following are all formulas:
° < (x,y)

<(1,1)

x=+(y,1)

< (xy) = (x=+(y,1))

Ix(1 =+(1,1))

VxVy < (x,y) = (x = +(y,1))




Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person, Employee, isString, isInteger}:

Select *
from Person

Person(x, y, z)




Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person, Employee, isString, isInteger, Arya}:

Select *
from Person
where Person.name = "Arya"

[Person(x,y, Z)N(x = Arya)]




Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person, Employee, isString, isInteger, Arya}:

Select Person.surname,Person.address
from Person
where Person.name = "Arya"

l

[Person(Arya, Y, z)j




Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

Example

For the vocabulary
DB = {Person, Employee, isString, isInteger, Arya}:

Select *
from Person inner join Employee
on Person.surname = Employee.surname

l

[Person(x,y, z)V Employee(w,y)j




Parse trees

Example

VxVy((y =x+1) = (x <))




Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.
Example
In ¢ = Vx3z3xP(x, y,z)) A Q(x):

@ z is bound to 3z

@ y is free

@ First x is bound to dx

@ Second x is free

A formula with no free variables is a sentence.
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Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.
Example
In o(x,y) = Vx3z3xP(x,y, z)) A Q(x):

@ z is bound to 3z

@ y is free

@ First x is bound to dx

@ Second x is free

A formula with no free variables is a sentence.

It can be useful to have “access” to the free variables of a formula.
So if xq,...,xx are the free variables of ¢, we may denote this as
(X1, vy Xk)-



Formulas as predicates

Formulas can be viewed as complex predicates: predicates that are
built from other predicates, either by

@ Combining them using the boolean operators

e “Simplifying” using quantification and term substitutions
(projection)

The free variables represent the arity of the predicate, hence the
notation ¢(xi, ..., Xk).
Note

Variable names matter: ¢(x) and ¢(y) are different formulas!
However, they will be interpreted as the same predicate.




Formulas as predicates

Example

From binary predicates P and Q; and constant ¢ we can build
complex predicates like:

o a(w,x,y,z) = (P(x,w)V Q(y,z)) AN(w=y)A(z=c)
° B(x,y,z) = (P(x,y) VQ(y,2)) A (z = ¢)

° v(x,y) = P(x,y) vV Q(y,c)

e 0(x) =3yP(x,y) VvV IyQ(y,c)




Formulas as predicates

Example

From binary predicates P and Q; and constant ¢ we can build
complex predicates like:

o a(w,x,y,z) = (P(x,w)V Q(y,z)) AN(w=y)A(z=c)
° B(x,y,z) = (P(x,y) VQ(y,2)) A (z = ¢)

° v(x,y) = P(x,y) vV Q(y,c)

e 0(x) =3yP(x,y) VvV IyQ(y,c)

NB

«, B and ~y are different predicates: o represents a 4-ary predicate,
whereas 3 represents a 3-ary predicate and -y represents a binary
predicate.




Substitution

If t is a term, ¢ a formula, and x € FV(y), then the substitution
of t for x in ¢ (denoted ¢[t/x]) is the formula obtained by
replacing every free occurrence of x with t.

Alternatively (if the free variables are listed), substituting t for x in
©(x) can be written as ¢(t).



Summary of topics

@ Re-introduction to Predicate Logic
@ Syntax of Predicate Logic
@ Semantics of Predicate Logic

@ Natural Deduction for Predicate Logic



Models

Predicate formulas are interpreted in Models.

Given a vocabulary V' a model M defines:
@ A (non-empty) domain D = Dom(M)

@ For every predicate symbol P € V with arity k: a k-ary
relation PM on D

@ For every function symbol f € V with arity k: a function
fM:. Dk~ D

@ For every constant symbol ¢ € V: an element, c™ of D

In this course (hopefully)

Formulas have predicates; Models have relations.




Models: examples

Example
For the vocabulary V = {<,+,1} the following are models:
@ N with the standard definitions of <, +, and 1.

e {0,1,2,3,4} with the standard definition of < and 1, and
m + n defined as m + n (mod 5).

@ The directed graph G = (V, E) shown below with <= E; and
v + w defined to be w.

@i%:@




Models: example (databases)

Example

For the vocabulary DB = {Person, Employee, isString, isInteger},

the following database is a model:

Person Employee
Name | Surname Address ID Surname
Arya Stark Winterfell 31415 Tyrell
Jon Snow Winterfell 27182 | Lannister
Cersei | Lannister | King's Landing 16180 | Targaryen

isString and isInteger are defined by what values are permitted in

each of the columns (sanitizing the input).




Environments

Given a model M, an environment for M (or lookup table) is a
function from the set of variables to Dom(M).



Environments

Given a model M, an environment for M (or lookup table) is a
function from the set of variables to Dom(M).

Given an environment 7, we denote by 7[x — c] the environment
that agrees with 7) everywhere except possibly at x (where it has
value ¢).



Interpretations

An interpretation is a pair (M, n) where M is a model and 7 is
an environment.



Interpretations

An interpretation is a pair (M, n) where M is a model and 7 is
an environment.

An interpretation (M, n) maps terms to elements of Dom(M) re-
cursively as follows:

o [x]} = n(x)
o [c]} = M

o [f(tr,....t)lh = FM ([l - - - [l h)
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Interpretations

An interpretation is a pair (M, n) where M is a model and 7 is
an environment.

An interpretation (M, n) maps formulas to B recursively as follows:

o IIP(tl, RN tk)]]z/l = true if PM(IIH]]?\/[’ cey Htk]r]\/[) holds.

) |It1 = t2]]17/\/l = true If [[tlth = |[t2]]77M

o [Vxp]h, = true if ﬂ(p]]n[XHC] = true for all ¢ € Dom(M)

o [3x¢]}, = true if |[<p]]"M[)HC] = true for some ¢ € Dom(M)

o [¢],, defined in the same way as Propositional Logic for all
other formulas ¢. For example [ A Y]}, = [¢] 1 &&[¥],

Notation
We write M, n = ¢ if [¢]}, = true




Interpretations: examples

Example

VxVy((y =x+1) = (x < y))

@ N with the standard definitions of <, +, and 1:
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Example

VxVy((y =x+1) = (x < y))

@ N with the standard definitions of <, +, and 1: true

e {0,1,2,3,4} with the standard definition of < and 1, and
m + n defined as m + n (mod 5): false




Interpretations: examples

Example

VxVy((y =x+1) = (x <))

@ N with the standard definitions of <, +, and 1: true

e {0,1,2,3,4} with the standard definition of < and 1, and
m + n defined as m + n (mod 5): false

@ The directed graph G = (V, E) shown below with <= E; and
v + w defined to be w.

@i%:@




Interpretations: examples

Example

VxVy((y =x+1) = (x < y))

@ N with the standard definitions of <, +, and 1: true

e {0,1,2,3,4} with the standard definition of < and 1, and
m + n defined as m + n (mod 5): false

@ The directed graph G = (V, E) shown below with <= E; and
v + w defined to be w.

@i%:@

true
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and propagating them out.
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In the definition of [[4,0]]77M 7 is only used to define values for the
free variables. In particular, if ¢ is a sentence then [¢], is
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In the definition of [[4,0]]77M 7 is only used to define values for the
free variables. In particular, if ¢ is a sentence then [¢], is
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on Dom(M).



Why separate the environment from the model?

In the definition of [[4,0]]77M 7 is only used to define values for the
free variables. In particular, if ¢ is a sentence then [¢], is
independent of 7.

Define [-] 1, by “delaying” the assigning of values to free variables,
and propagating them out. That is, define:

|[g0(x1,X2,...,X,,)]]M = |I(,0]]M(X]_,X27 ceeyXn)

where [¢] 1, : Dom(M)" — B; that is, [¢] ,, is an n-ary relation
on Dom(M).

This matches the perspective of formulas as complex predicates:

©(x1, X2, ...,Xp) an n-ary predicate

4

[l v an n-ary relation on Dom(M)



Interpretations: example (databases)

Example
@ Vocabulary: database schema
e Formulas: queries (¢)
@ Models: databases (D)

@ Interpretation:
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@ Vocabulary: database schema
e Formulas: queries (¢)
@ Models: databases (D)

o Interpretation: [¢], is a relation on Dom(D), i.e. a (derived)
table in D




Interpretations: example (databases)

Example
@ Vocabulary: database schema
e Formulas: queries (¢)
@ Models: databases (D)

o Interpretation: [¢], is a relation on Dom(D), i.e. a (derived)
table in D

@ Environment:




Interpretations: example (databases)

Example

Vocabulary: database schema
@ Formulas: queries (¢)

@ Models: databases (D)
°

Interpretation: [¢], is a relation on Dom(D), i.e. a (derived)
table in D

Environment: “looks up” an entry in a (derived) table and
returns whether the lookup was successful




Interpretations: example (databases)

Example

Vocabulary: database schema
@ Formulas: queries (¢)

@ Models: databases (D)
°

Interpretation: [¢], is a relation on Dom(D), i.e. a (derived)
table in D

Environment: “looks up” an entry in a (derived) table and
returns whether the lookup was successful

[]%: Success/fail outcome of looking up a specific entry in a
query result on D.

4




Satisfiability, truth, validity

A formula ¢ of predicate logic is:

o satisfiable if there is some model M and some environment 7
such that M, n |= . That is, there is some interpretation
(M, n) that satisfies .

@ true in a model M if for all environments 1 we have

M, n = .

@ a logical validity if it is true in all models.

NB
For sentences the first two definitions coincide.




Satisfiability, truth, validity

A formula ¢ of predicate logic is:

o satisfiable if there is some model M and some environment 7
such that M, n |= . That is, there is some interpretation
(M, n) that satisfies .

@ true in a model M if for all environments 1 we have
M= .

@ a logical validity if it is true in all models.

NB
For sentences the first two definitions coincide.

Example

The sentence VxVy((y = x + 1) — (x < y)) is satisfiable but not a
logical validity.

v




Entailment, Logical equivalence

@ A theory T entails a formula ¢, T |= ¢, if ¢ is satisfied by
any interpretation that satisfies all formulas in T.

o ¢ is logically equivalent to v, ¢ = v, if [¢]}, = [¢]}, for
all interpretations (M, n).



Entailment, Logical equivalence

@ A theory T entails a formula ¢, T |= ¢, if ¢ is satisfied by
any interpretation that satisfies all formulas in T.

o ¢ is logically equivalent to v, ¢ = v, if [¢]}, = [¢]}, for
all interpretations (M, n).

Theorem

@ v1,...,0n =0 if, and only if, (p1 N+~ Npp) = Y is a
logical validity.

e p =1 if, and only if, ¢ <> 1 is a logical validity.
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@ Natural Deduction for Predicate Logic



Motivation

Demonstrating satisfiability (and invalidity) is easy: just provide an
interpretation which does (not) satisfy the formula. Note: finding
such an interpretation is a different question.

How can you show a formula/entailment is valid?



Motivation

Demonstrating satisfiability (and invalidity) is easy: just provide an
interpretation which does (not) satisfy the formula. Note: finding
such an interpretation is a different question.

How can you show a formula/entailment is valid?

Answer: Find a proof in a proof system that is sound.



Natural deduction for Predicate Logic

Inference rules for Propositional Logic + seven rules for quantifiers
and equality

Operator ‘ Introduction ‘ Elimination
v V-l V-E
= 3 3-E
= =-1 =-E1 =-E2




Arbitrary variables

Formulas of Predicate Logic involve variables. Unsurprisingly, the
new inference rules involve manipulating variables.

A variable is arbitrary if it does not occur (as a free variable) in
any undischarged assumption.

Intuitively: an arbitrary variable can be assigned any element of
the domain and the formula will still hold.
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Y Introduction and Elimination

VxA(x)

V-elimination: A(C)

(V-E)

(c is arbitrary)
(x not free in A(c))
A(c) (¢ not free in A(x))
VxA(x)

V-introduction:

(v-1)



Proof example

Prove: VxVy P(x,y) = VyVx P(x,y)

] Line \ Premises \

Formula \ Rule \References‘
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2 1 Vy P(a,y) V-E 1
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Proof example

Prove: VxVy P(x,y) F VyVx P(x,y)
Line | Premises Formula Rule | References
1 VxVy P(x,y) | Premise
2 1 Vy P(a,y) V-E 1
3 1 P(a, b) V-E 2
4 1 Vx P(x, b) V-1 3
5 1 VyVx P(x,y) V-l 4
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3 Introduction and Elimination

J-introduction: Ale) (x not free in A) (3
IxA(x)

[A(c)] (x not free in A(c))
3-elimination: : (c is arbitrary)
IxA(x) B (c not free in B)
B

(3-E)
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-

Proof example (Fitch)
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1.

-

IxJy P(x,y)
2. Jy P(a,y)
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Proof example (Fitch)

Prove: dx3y P(x,y) F Jy3dx P(x,y)

-

1.

-

IxJy P(x,y)
2. Jy P(a,y)

3. P(a,b)

T4. 3Ix P(x, b) 3-1: 3




Proof example (Fitch)
Prove: 3dx3Jy P(x,y) F 3yax P(x,y)
1. 3x3dy P(x,y)
T 2.3y P(a,y)
T 3. P(a,b)

T4. 3Ix P(x, b) 3-1: 3

5. dy3x P(x,y) 314




Prove:

-

1.

-

Proof example (Fitch)

IxJy P(x,y)
2. Jy P(a,y)

3. P(a,b)

T4. 3Ix P(x, b)

5. dy3x P(x,y)

6. Jy3x P(x,y)

Ixdy P(x,y) b Jy3ax P(x,y)

3-1: 3
3-1: 4

3-E: 2,35



Proof example (Fitch)

Prove:

-

1. 3x3dy P(x,y)
T 2.3y P(a,y)

3. P(a,b)

T4. Ix P(x, b)

5. dy3ax P(x,y)

6. Jy3x P(x,y)

7. JyIx P(x,y)

IxJy P(x,y) + Jy3x P(x,y)

3-1: 3
3-1: 4
3-E: 2, 3-5

J-E: 1,2-6



= Introduction and Elimination

=-introduction: a=a =
=-elimination (1): = bA(b) (2) (=E1)
=-elimination (2): a=b (b) (—E1)
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Proof example (Fitch)

Prove: F VxVy(x=y)— (y =x)

l.a=b
TQ. a=a =
3.b=a =-E1: 1,2




Proof example (Fitch)

Prove: F VxVy (x =y)— (y = x)

l.a=b
TQ. a=a =

3. b=a2a =-E1: 1,2
4. (a=b)— (b=a) —-1: 1-3



Proof example (Fitch)

Prove: F VxVy(x=y)— (y =x)

T l.a=b
TQ.a:a =
3.b=a =-E1: 1,2
4.(a=b)— (b=a) —-1: 1-3
5% (a =) (v = 2) 1: 4

6. VxVy (x =y) = (y =x) v-I:5
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Theorem
Natural deduction is sound and complete for Predicate Logic:

Tke ifbandonlyif, Tk

@ Use proofs to show validity

@ Use countermodels to show unprovability



