
4a. Parameterized intractability: the W-hierarchy

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Sydney, Australia
2Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 1 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 2 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 3 / 32

Polynomial-time reduction

Definition 1
A polynomial-time reduction from a decision problem Π1 to a decision problem Π2

is a polynomial-time algorithm, which, for any instance of Π1 produces an
equivalent instance of Π2.
If there exists a polynomial-time reduction from Π1 to Π2, we say that Π1 is
polynomial-time reducible to Π2 and write Π1 ≤P Π2.

Important: ≤P is transitive.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 4 / 32

New polynomial-time algorithms via reductions

Lemma 2
If Π1,Π2 are decision problems such that Π1 ≤P Π2, then
Π2 ∈ P implies Π1 ∈ P .

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 5 / 32

A brief history

P vs. NP problem

P 6= NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

The hardest problem in NP

Satisfiability is one of the “hardest” problems in NP.

[Stephen Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM

symp. on Theory of Computing. 151–158 (1971).]

[Levin, Leonid (1973). Universal search problems (translated from Russian). Problems of

Information Transmission. 9 (3): 115–116.]

21 more “hardest” problems

3-Sat, 3-Coloring, Independent Set, Vertex Cover, . . .

[Richard Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations. The IBM Research Symposia Series. 85–103 (1972).]

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 6 / 32

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

A brief history

P vs. NP problem

P 6= NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

The hardest problem in NP

Satisfiability is one of the “hardest” problems in NP.

[Stephen Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM

symp. on Theory of Computing. 151–158 (1971).]

[Levin, Leonid (1973). Universal search problems (translated from Russian). Problems of

Information Transmission. 9 (3): 115–116.]

21 more “hardest” problems

3-Sat, 3-Coloring, Independent Set, Vertex Cover, . . .

[Richard Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations. The IBM Research Symposia Series. 85–103 (1972).]

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 6 / 32

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

A brief history

P vs. NP problem

P 6= NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

The hardest problem in NP

Satisfiability is one of the “hardest” problems in NP.

[Stephen Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM

symp. on Theory of Computing. 151–158 (1971).]

[Levin, Leonid (1973). Universal search problems (translated from Russian). Problems of

Information Transmission. 9 (3): 115–116.]

21 more “hardest” problems

3-Sat, 3-Coloring, Independent Set, Vertex Cover, . . .

[Richard Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations. The IBM Research Symposia Series. 85–103 (1972).]

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 6 / 32

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

A brief history

P vs. NP problem

P 6= NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

The hardest problem in NP

Satisfiability is one of the “hardest” problems in NP.

[Stephen Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM

symp. on Theory of Computing. 151–158 (1971).]

[Levin, Leonid (1973). Universal search problems (translated from Russian). Problems of

Information Transmission. 9 (3): 115–116.]

21 more “hardest” problems

3-Sat, 3-Coloring, Independent Set, Vertex Cover, . . .

[Richard Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations. The IBM Research Symposia Series. 85–103 (1972).]
S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 6 / 32

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

NP-completeness

Definition 3 (NP-hard)

A decision problem Π is NP-hard if Π′ ≤P Π for every Π′ ∈ NP.

Definition 4 (NP-complete)

A decision problem Π is NP-complete if

1 Π ∈ NP, and

2 Π is NP-hard.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 7 / 32

Proving NP-completeness

Lemma 5

If Π is a decision problem such that Π′ ≤P Π for some NP-hard decision problem
Π′, then Π is NP-hard.
If, in addition, Π ∈ NP, then Π is NP-complete.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 8 / 32

Proving NP-completeness II

Method to prove that a decision problem Π is NP-complete:

1 Prove Π ∈ NP
2 Prove Π is NP-hard.

Select a known NP-hard decision problem Π′.
Describe an algorithm that transforms every instance I of Π′ to an instance
r(I) of Π.
Prove that for each instance I of Π′, we have that I is a Yes-instance of Π′

⇔ r(I) is a Yes-instance of Π.
Show that the algorithm runs in polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 9 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 10 / 32

Main Parameterized Complexity Classes

n: instance size
k: parameter

P: class of problems that can be solved in nO(1) time
FPT: class of parameterized problems that can be solved in f(k) · nO(1) time
W[·]: parameterized intractability classes
XP: class of parameterized problems that can be solved in f(k) · ng(k) time

(“polynomial when k is a constant”)

P ⊆ FPT ⊆W[1] ⊆W[2] · · · ⊆W[P] ⊆ XP

Note: We assume that f is computable and non-decreasing.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 11 / 32

Polynomial-time reductions for parameterized problems?

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

An independent set in a graph G = (V,E) is a subset of vertices S ⊆ V such that
there is no edge uv ∈ E with u, v ∈ S.

Independent Set
Input: Graph G, integer k
Parameter: k
Question: Does G have an independent set of size k?

We know: Independent Set ≤P Vertex Cover

However: Vertex Cover ∈ FPT but Independent Set is not known to
be in FPT

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 12 / 32

Polynomial-time reductions for parameterized problems?

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

An independent set in a graph G = (V,E) is a subset of vertices S ⊆ V such that
there is no edge uv ∈ E with u, v ∈ S.

Independent Set
Input: Graph G, integer k
Parameter: k
Question: Does G have an independent set of size k?

We know: Independent Set ≤P Vertex Cover

However: Vertex Cover ∈ FPT but Independent Set is not known to
be in FPT

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 12 / 32

We will need another type of reductions

Issue with polynomial-time reductions: parameter can change arbitrarily.

We will want the reduction to produce an instance where the parameter is
bounded by a function of the parameter of the original instance.

Also: we can allow the reduction to take FPT time instead of only
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 13 / 32

We will need another type of reductions

Issue with polynomial-time reductions: parameter can change arbitrarily.

We will want the reduction to produce an instance where the parameter is
bounded by a function of the parameter of the original instance.

Also: we can allow the reduction to take FPT time instead of only
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 13 / 32

We will need another type of reductions

Issue with polynomial-time reductions: parameter can change arbitrarily.

We will want the reduction to produce an instance where the parameter is
bounded by a function of the parameter of the original instance.

Also: we can allow the reduction to take FPT time instead of only
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 13 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 14 / 32

Parameterized reduction

Definition 6
A parameterized reduction from a parameterized decision problem Π1 to a
parameterized decision problem Π2 is an algorithm, which, for any instance I of
Π1 with parameter k produces an instance I ′ of Π2 with parameter k′ such that

I is a Yes-instance for Π1 ⇔ I ′ is a Yes-instance for Π2,

there exists a computable function g such that k′ ≤ g(k), and

there exists a computable function f such that the running time of the
algorithm is f(k) · |I|O(1).

If there exists a parameterized reduction from Π1 to Π2, we write Π1 ≤FPT Π2.

Note: We can assume that f and g are non-decreasing.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 15 / 32

New FPT algorithms via reductions

Lemma 7
If Π1,Π2 are parameterized decision problems such that Π1 ≤FPT Π2, then
Π2 ∈ FPT implies Π1 ∈ FPT.

Proof sketch.
To obtain an FPTalgorithm for Π1, perform the reduction and then use an
FPTalgorithm for Π2 on the resulting instance.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 16 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 17 / 32

Boolean Circuits

Definition 8
A Boolean circuit is a directed acyclic graph with the nodes labeled as follows:

every node of in-degree 0 is an input node,

every node with in-degree 1 is a negation node (¬), and

every node with in-degree ≥ 2 is either an AND-node (∧) or an OR-node (∨).

Moreover, exactly one node with out-degree 0 is also labeled the output node.
The depth of the circuit is the maximum length of a directed path from an input
node to the output node.
The weft of the circuit is the maximum number of nodes with in-degree ≥ 3 on a
directed path from an input node to the output node.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 18 / 32

Example

a b c d e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
out

A depth-3, weft-1 Boolean circuit with inputs a, b, c, d, e.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 19 / 32

Weighted Circuit Satisfiability

Given an assignment of Boolean values to the input gates, the circuit determines
Boolean values at each node in the obvious way.
If the value of the output node is 1 for an input assignment, we say that this
assignment satisfies the circuit.
The weight of an assignment is its number of 1s.

Weighted Circuit Satisfiability (WCS)

Input: A Boolean circuit C, an integer k
Parameter: k
Question: Is there an assignment with weight k that satisfies C?

Exercise: Show that Weighted Circuit Satisfiability ∈ XP.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 20 / 32

WCS for special circuits

Definition 9
The class of circuits Ct,d contains the circuits with weft ≤ t and depth ≤ d.

For any class of circuits C, we can define the following problem.

WCS[C]

Input: A Boolean circuit C ∈ C, an integer k
Parameter: k
Question: Is there an assignment with weight k that satisfies C?

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 21 / 32

W classes

Definition 10 (W-hierarchy)

Let t ∈ {1, 2, . . . }. A parameterized problem Π is in the parameterized complexity
class W[t] if there exists a parameterized reduction from Π to WCS[Ct,d] for some
constant d ≥ 1.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 22 / 32

Independent Set and Dominating Set

Theorem 11

Independent Set ∈W[1].

Theorem 12

Dominating Set ∈W[2].

Recall: A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such
that NG[S] = V .

Dominating Set
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a dominating set of size at most k?

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 23 / 32

“Proof” by picture

Parameterized reductions from Independent Set to WCS[C1,3] and from
Dominating Set to WCS[C2,2].

a

b c

d e a b c d e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
out

a b c d e

∨ ∨ ∨ ∨ ∨

∧
out

Setting an input node to 1 corresponds to adding the corresponding vertex to the
independent set / dominating set.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 24 / 32

W-hardness

Definition 13

Let t ∈ {1, 2, . . . }.
A parameterized decision problem Π is W[t]-hard if for every parameterized
decision problem Π′ in W[t], there is a parameterized reduction from Π′ to Π.
Π is W[t]-complete if Π ∈W[t] and Π is W[t]-hard.

Theorem 14

Independent Set is W[1]-complete.

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science 141(1&2), 109–131 (1995).

Theorem 15

Dominating Set is W[2]-complete.

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Computing 24(4), 873–921 (1995).

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 25 / 32

W-hardness

Definition 13

Let t ∈ {1, 2, . . . }.
A parameterized decision problem Π is W[t]-hard if for every parameterized
decision problem Π′ in W[t], there is a parameterized reduction from Π′ to Π.
Π is W[t]-complete if Π ∈W[t] and Π is W[t]-hard.

Theorem 14

Independent Set is W[1]-complete.

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science 141(1&2), 109–131 (1995).

Theorem 15

Dominating Set is W[2]-complete.

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Computing 24(4), 873–921 (1995).

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 25 / 32

Proving W-hardness

To show that a parameterized decision problem Π is W[t]-hard:

Select a W[t]-hard problem Π′

Show that Π′ ≤FPT Π by designing a parameterized reduction from Π′ to Π

Design an algorithm, that, for any instance I ′ of Π′ with parameter k′,
produces an equivalent instance I of Π with parameter k
Show that k is upper bounded by a function of k′

Show that there exists a function f such that the running time of the
algorithm is f(k′) · |I ′|O(1)

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 26 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 27 / 32

Clique

A clique in a graph G = (V,E) is a subset of its vertices S ⊆ V such that every
two vertices from S are adjacent in G.

Clique

Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a clique of size k?

We will show that Clique is W[1]-hard by a parameterized reduction from
Independent Set.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 28 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.

Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).

Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.

(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.

(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.

Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.
Parameter. k′ ≤ k.

Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard

Lemma 16
Independent Set ≤FPT Clique.

Proof.

Given any instance (G = (V,E), k) for Independent Set, we need to describe
an FPT algorithm that constructs an equivalent instance (G′, k′) for Clique such
that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent
Set if and only if (G′, k′) is a Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S,
we have that uv /∈ E. Therefore, uv ∈ E(G) for every two vertices in S. We
conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in
polynomial time.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 29 / 32

Clique is W[1]-hard II

Corollary 17

Clique is W[1]-hard

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 30 / 32

Outline

1 Reminder: Polynomial Time Reductions and NP-completeness

2 Parameterized Complexity Theory
Parameterized reductions
Parameterized complexity classes

3 Case study

4 Further Reading

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 31 / 32

Further Reading

Chapter 13, Fixed-parameter Intractability in
Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Chapter 13, Parameterized Complexity Theory in
Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

Elements of Chapters 20–23 in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

S. Gaspers (UNSW) Parameterized intractability Semester 2, 2018 32 / 32

	Reminder: Polynomial Time Reductions and NP-completeness
	Parameterized Complexity Theory
	Parameterized reductions
	Parameterized complexity classes

	Case study
	Further Reading

