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Strictness of FOL
To reason from P(a) to Q(a), need either
• facts about a itself
• universals, e.g. ∀x(P(x) → Q(x))

◦ something that applies to all instances
◦ all or nothing!

But most of what we learn about the world is in terms of generics
• e.g., encyclopedia entries for ferris wheels, violins, turtles, wildflowers

Properties are not strict for all instances, because

• genetic / manufacturing varieties

◦ early ferris wheels
• borderline cases

◦ toy violins
• imagined cases

◦ flying turtles
• cases in exceptional circumstances

◦ dried wildflowers
• . . .
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Generics vs Universals

Violins have four strings
vs.

All violins have four strings
vs.

All violins that are not E1 or E2 or . . . have four strings
(exceptions usually cannot be enumerated)

Similarly, for general properties of individuals
Alexander the great: ruthlessness
Ecuador: exports
pneumonia: treatment

Goal: be able to say a P is a Q in general, but not necessarily
reasonable to conclude Q(a) given P(a) unless there is a good reason not to

Here: qualitative version (no numbers)
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Varieties vs Defaults
General statements

• statistical: Most P ’s are Q’s.
◦ People living in Quebec speak French.

• normal: All normal P ’s are Q’s.
◦ Polar bears are white.

• prototypical: The prototypical P is a Q.
◦ Owls hunt at night.

Representational

• conversational: Unless I tell you otherwise, a P is a Q.
◦ default slot values in frames◦ disjointness in IS-A hierarchy (sometimes)◦ closed-world assumption (below)

Epistemic rationales

• familiarity: If a P was not a Q, you would know it.
◦ an older brother◦ very unusual individual, situation or event

• group confidence: All known P ’s are Q’s.
◦ NP-hard problems unsolvable in polynomial time.

Persistence rationale

• inertia: A P is a Q if it used to be a Q.
◦ colours of objects◦ locations of parked cars (for a while!)
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Nonmonotonic Reasoning

• Suppose you are told “Tweety is a bird”
• What conclusions would you draw?
• Now, consider being further informed that “Tweety is an emu”
• What conclusions would you draw now? Do they differ from the conclusions

that you would draw without this information? In what way(s)?
• Nonmonotonic reasoning is an attempt to capture a form of commonsense

reasoning
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Nonmonotonic Reasoning

• In classical logic the more facts (premises) we have, the more conclusions we
can draw

• This property is known as Monotonicity

If ∆ ⊆ Γ, then Cn(∆) ⊆ Cn(Γ)

(where Cn denotes classical consequence)
• However, the previous example shows that we often do not reason in this

manner
• Might a nonmonotonic logic—one that does not satisfy the Monotonicity

property—provide a more effective way of reasoning?
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Why Nonmonotonicity?

• Problems with the classical approach to consequence
◦ It is usually not possible to write down all we would like to say about a domain
◦ Inferences in classical logic simply make implicit knowledge explicit; we would

also like to reason with tentative statements
◦ Sometimes we would like to represent knowledge about something that is not

entirely true or false; uncertain knowledge

• Nonmonotonic reasoning is concerned with getting around these
shortcomings
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Makinson’s Classification

Makinson has suggested the following classification of nonmonotonic logics:
• Additional background assumptions
• Restricting the set of valuations
• Additional rules

David Makinson, Bridges from Classical to Nonmonotonic Logic, Texts in
Computing, Volume 5, King’s College Publications, 2005.
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Nonmonotonicity

• Classical logic satisfies the following property
• Monotonicity: If ∆ ⊆ Γ, then Cn(∆) ⊆ Cn(Γ)

(equivalently, Γ ` φ implies Γ ∪∆ ` φ)
• However, we often draw conclusions based on ‘what is normally the case’ or

‘true by default’
• More information can lead us to retract previous conclusions
• We shall adopt the following notation

◦ ` classical consequence relation
◦ |∼ nonmonotonic consequence relation
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Consequence Operation Cn

Other properties of consequence operation Cn:
Inclusion ∆ ⊆ Cn(∆)

Cumulative Transitivity ∆ ⊆ Γ ⊆ Cn(∆) implies Cn(Γ) ⊆ Cn(∆)

Compactness If φ ∈ Cn(∆) then there is a finite ∆′ ⊆ ∆ such that φ ∈ Cn(∆′)

Disjunction in the Premises Cn(∆ ∪ {a}) ∩ Cn(∆ ∪ {b}) ⊆ Cn(∆ ∪ {a ∨ b})
Note: ∆ ` φ iff φ ∈ Cn(∆)
alternatively: Cn(∆) = {φ : ∆ ` φ}
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Example

Suppose I tell you ‘Tweety is a bird’
You might conclude ‘Tweety flies’
I then tell you ‘Tweety is an emu’
You conclude ‘Tweety does not fly’

bird(Tweety) |∼ flies(Tweety)
bird(Tweety) ∧ emu(Tweety) |∼¬flies(Tweety)
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The Closed World Assumption

• A complete theory is one in which for every ground atom in the language,
either the atom or its negation appears in the theory

• The closed world assumption (CWA) completes a base (non-closed) set of
formulae by including the negation of a ground atom whenever the atom does
not follow from the base

• In other words, if we have no evidence as to the truth of (ground atom) P, we
assume that it is false

• Given a base set of formulae ∆ we first calculate the assumption set
¬P ∈ ∆asm iff for ground atom P, ∆ 6` P

• CWA(∆) = Cn{∆ ∪∆asm}
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Example

∆ = {P(a),P(b),P(a)→ Q(a)}
∆asm = {¬Q(b)}
Theorem: The CWA applied to a consistent set of formulae ∆ is inconsistent iff
there are positive ground literals L1, . . . , Ln such that ∆ |= L1 ∨ . . .∨ Ln but ∆ 6|= Li
for i = 1, . . . , n.
• Note that in the example above we limited our attention to the object

constants that appeared in ∆ however the language could contain other
constants. This is known as the Domain Closure Assumption (DCA)

• Another common assumption is the Unique-Names Assumption (UNA).
If two ground terms can’t be proved equal, assume that they are not.
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Predicate Completion

Idea: The only objects that satisfy a predicate are those that must
• For example, suppose we have P(a). Can view this as

∀x . x = a→ P(x)
the if-half of a definition

• Can add the only if part:
∀x . P(x)→ x = a

• Giving:
∀x . P(x)↔ x = a
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Predicate Completion

• Definition: A clause is solitary in a predicate P if whenever the clause
contains a postive instance of P, it contains only one instance of P.
◦ For example, Q(a) ∨ P(a) ∨ ¬P(b) is not solitary in P

Q(a) ∨ R(a) ∨ P(b) is solitary in P

• Completion of a predicate is only defined for sets of clauses solitary in that
predicate
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Predicate Completion

• Each clause can be written:
∀y . Q1 ∧ . . . ∧Qm → P(t) (P not contained in Qi )
∀y . ∀x . (x = t) ∧Q1 ∧ . . . ∧Qm → P(x)
∀x .(∀y . (x = t) ∧Q1 ∧ . . . ∧Qm → P(x)) (normal form of clause)

• Doing this to every clause gives us a set of clauses of the form:
∀x . E1 → P(x)
. . .
∀x . En → P(x)

• Grouping these together we get:
∀x . E1 ∨ . . . ∨ En → P(x)

• Completion becomes: ∀x . P(x)↔ E1 ∨ . . . ∨ En
and we can add this to the original set of formulae
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Example

• Suppose ∆ = {∀x . Emu(x)→ Bird(x),
Bird(Tweety),
¬Emu(Tweety)}

• We can write this as
∀x . (Emu(x) ∨ x = Tweety)→ Bird(x)

• Predicate completion of P in ∆ becomes
∆ ∪ {∀x . Bird(x)→ Emu(x) ∨ x = Tweety}
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Circumscription

• Idea: Make extension of predicate as small as possible
• Example:

∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x)
Bird(Tweety), Bird(Sam), Tweety 6= Sam, ¬Flies(Sam)

• Want to be able to conclude Flies(Tweety) but ¬Flies(Sam)

• Accept interpretations where Ab predicate is as “small” as possible
• That is, we minimise abnormality

19



Circumscription

• Given interpretations I1 = 〈D, I1〉, I2 = 〈D, I2〉, I1 ≤ I2 iff for every predicate
P ∈ P, I1[P] ⊆ I2[P].

• Γ |=circ φ iff for every interpretation I such that I |= Γ, either I |= φ or there is a
I′ < I and I′ |= Γ.

• φ is true in all minimal models
• Now consider

∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x)
∀x .Emu(x)→ Bird(x) ∧ ¬Flies(x)
Bird(Tweety)
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Reiter’s Default Logic (1980)

• Add default rules of the form α:β
γ

◦ “If α can be proven and consistent to assume β, then conclude γ”
• Often consider normal default rules α:β

β

• Example: bird(x):flies(x)
flies(x)

• Default theory 〈D, W 〉
D – set of defaults; W – set of facts

• Extension of default theory contains as many default conclusions as possible
and must be consistent (and is closed under classical consequence Cn)

• Concluding whether formula φ follows from 〈D, W 〉
◦ Sceptical inference: φ occurs in every extension of 〈D, W 〉 Credulous inference:
φ occurs in some extension of 〈D, W 〉
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Examples

• W = {}; D = { :p
¬p} – no extensions

• W = {p ∨ r}; D = {p:q
q , r :q

q } – one extension {p ∨ r}
• W = {p ∨ q}; D = { :¬p

¬p ,
:¬q
¬q } – two extensions {¬p, p ∨ q}, {¬q, p ∨ q}

• W = {emu(Tweety), ∀x .emu(x)→ bird(x)}; D = {bird(x):flies(x)
flies(x) } – one

extension
• What if we add emu(x):¬flies(x)

¬flies(x) ?
• Poole (1988) achieves a similar effect (but not quite as general) by changing

the way the underlying logic is used rather than introducing a new element
into the syntax
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Default Theories—Properties

Observation: Every normal default theory (default rules are all normal) has an
extension
Observation: If a normal default theory has several extensions, they are mutually
inconsistent
Observation: A default theory has an inconsistent extension iff D is inconsistent
Theorem: (Semi-monotonicity)
Given two normal default theories 〈D, W 〉 and 〈D′, W 〉 such that D ⊆ D′ then, for
any extension E(D, W ) there is an extension E(D′, W ) where
E(D, W ) ⊆ E(D′, W )
(The addition of normal default rules does not lead to the retraction of
consequences.)
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Nonmonotonic Consequence

• Abstract study and analysis of nonmonotonic consequence relation |∼ in
terms of general properties Kraus, Lehmann and Magidor (1991)

• Some common properties include:
Supraclassicality If φ ` ψ, then φ |∼ψ
Left Logical Equivalence If ` φ↔ ψ and φ |∼χ, then ψ |∼χ
Right Weakening If ` ψ → χ and φ |∼ψ, then φ |∼χ

And If φ |∼ψ and φ |∼χ, then φ |∼ψ ∧ χ
• Plus many more!
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KLM Systems

• Kraus, Lehman and Magidor (1991) study various classes of nonmonotonic
consequence relations

• This has been extended since. A good reference for this line of work is
Schlechta (1997)
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Summary

• Nonmonotonic reasoning attempts to capture a form of commonsense
reasoning

• Nonmonotonic reasoning often deals with inferences based on defaults or
‘what is usually the case’

• Belief change and nonmonotonic reasoning: two sides of the same coin?
• Can introduce abstract study of nonmonotonic consequence relations in same

way as we study classical consequence relations
• Similar links exist with conditionals
• One area where nonmonotonic reasoning is important is reasoning about

action (dynamic systems)
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