

COMP4418: Knowledge Representation and Reasoning

Commonsense Reasoning: Non-Monotonic Reasoning

Maurice Pagnucco School of Computer Science and Engineering

COMP4418, Week 3

Strictness of FOL

To reason from P(a) to Q(a), need either

- facts about a itself
- universals, e.g. $\forall x(P(x) \rightarrow Q(x))$
 - something that applies to all instances
 - o all or nothing!

But most of what we learn about the world is in terms of generics

- e.g., encyclopedia entries for ferris wheels, violins, turtles, wildflowers Properties are not strict for all instances, because
 - genetic / manufacturing varieties
 - early ferris wheels
 - borderline cases
 - \circ toy violins
 - imagined cases

. . .

- flying turtles
- cases in exceptional circumstances
 - dried wildflowers

2

Generics vs Universals

Violins have four strings VS. All violins have four strings VS. All violins that are not E_1 or E_2 or ... have four strings (exceptions usually cannot be enumerated) Similarly, for general properties of individuals Alexander the great: ruthlessness Ecuador: exports pneumonia: treatment Goal: be able to say a *P* is a *Q* in general, but not necessarily reasonable to conclude Q(a) given P(a) unless there is a good reason not to Here: qualitative version (no numbers)

Varieties vs Defaults

General statements

- statistical: Most P's are Q's.
 People living in Quebec speak French.
- normal: All normal *P*'s are *Q*'s.
 O Polar bears are white.
- prototypical: The prototypical P is a Q.
 Owls hunt at night.

Representational

- conversational: Unless I tell you otherwise, a P is a Q.
 - O default slot values in frames
 - disjointness in IS-A hierarchy (sometimes)
 - closed-world assumption (below)

Epistemic rationales

- familiarity: If a *P* was not a *Q*, you would know it.
 - an older brother
 - very unusual individual, situation or event
- group confidence: All known *P*'s are *Q*'s.

NP-hard problems unsolvable in polynomial time.
 Persistence rationale

- inertia: A P is a Q if it used to be a Q.
 - O colours of objects
 - locations of parked cars (for a while!)

Nonmonotonic Reasoning

- Suppose you are told "Tweety is a bird"
- What conclusions would you draw?
- Now, consider being further informed that "Tweety is an emu"
- What conclusions would you draw now? Do they differ from the conclusions that you would draw without this information? In what way(s)?
- Nonmonotonic reasoning is an attempt to capture a form of *commonsense* reasoning

Nonmonotonicity

Closed World Assumption

Predicate Completion

Circumscription

Default Logic

Nonmonotonic Consequence KLM Systems

Nonmonotonic Reasoning

- In classical logic the more facts (premises) we have, the more conclusions we can draw
- This property is known as Monotonicity

If $\Delta \subseteq \Gamma$, then $Cn(\Delta) \subseteq Cn(\Gamma)$

(where *Cn* denotes classical consequence)

- However, the previous example shows that we often do not reason in this manner
- Might a nonmonotonic logic—one that does not satisfy the Monotonicity property—provide a more effective way of reasoning?

Why Nonmonotonicity?

- Problems with the classical approach to consequence
 - $\circ~$ It is usually not possible to write down all we would like to say about a domain
 - Inferences in classical logic simply make implicit knowledge explicit; we would also like to reason with tentative statements
 - Sometimes we would like to represent knowledge about something that is not entirely true or false; uncertain knowledge
- Nonmonotonic reasoning is concerned with getting around these shortcomings

Makinson's Classification

Makinson has suggested the following classification of nonmonotonic logics:

- Additional background assumptions
- Restricting the set of valuations
- Additional rules

David Makinson, *Bridges from Classical to Nonmonotonic Logic*, Texts in Computing, Volume 5, King's College Publications, 2005.

Nonmonotonicity

- · Classical logic satisfies the following property
- Monotonicity: If Δ ⊆ Γ, then Cn(Δ) ⊆ Cn(Γ) (equivalently, Γ ⊢ φ implies Γ ∪ Δ ⊢ φ)
- However, we often draw conclusions based on 'what is normally the case' or 'true by default'
- More information can lead us to retract previous conclusions
- We shall adopt the following notation
 - \circ \vdash classical consequence relation
 - \circ \sim nonmonotonic consequence relation

Consequence Operation Cn

Other properties of consequence operation Cn:

Inclusion $\Delta \subseteq Cn(\Delta)$

Cumulative Transitivity $\Delta \subseteq \Gamma \subseteq Cn(\Delta)$ implies $Cn(\Gamma) \subseteq Cn(\Delta)$

Compactness If $\phi \in Cn(\Delta)$ then there is a finite $\Delta' \subseteq \Delta$ such that $\phi \in Cn(\Delta')$ Disjunction in the Premises $Cn(\Delta \cup \{a\}) \cap Cn(\Delta \cup \{b\}) \subseteq Cn(\Delta \cup \{a \lor b\})$ Note: $\Delta \vdash \phi$ iff $\phi \in Cn(\Delta)$ alternatively: $Cn(\Delta) = \{\phi : \Delta \vdash \phi\}$

Example

Suppose I tell you 'Tweety is a bird' You might conclude 'Tweety flies' I then tell you 'Tweety is an emu' You conclude 'Tweety does not fly'

 $bird(Tweety) \vdash flies(Tweety)$ $bird(Tweety) \land emu(Tweety) \vdash \neg flies(Tweety)$

The Closed World Assumption

- A *complete* theory is one in which for every ground atom in the language, either the atom or its negation appears in the theory
- The *closed world assumption* (CWA) completes a base (non-closed) set of formulae by including the negation of a ground atom whenever the atom does not follow from the base
- In other words, if we have no evidence as to the truth of (ground atom) *P*, we assume that it is false
- Given a base set of formulae Δ we first calculate the *assumption* set ¬*P* ∈ Δ_{asm} iff for ground atom *P*, Δ ∀ *P*
- $CWA(\Delta) = Cn\{\Delta \cup \Delta_{asm}\}$

Example

 $\begin{array}{l} \Delta = \{P(a), P(b), P(a) \rightarrow Q(a)\} \\ \Delta_{asm} = \{\neg Q(b)\} \\ \textbf{Theorem:} \ \text{The CWA applied to a consistent set of formulae } \Delta \ \text{is inconsistent iff} \\ \text{there are positive ground literals } L_1, \ \ldots, \ L_n \ \text{such that } \Delta \models L_1 \lor \ldots \lor L_n \ \text{but } \Delta \not\models L_i \\ \text{for } i = 1, \ \ldots, \ n. \end{array}$

- Note that in the example above we limited our attention to the object constants that appeared in △ however the language could contain other constants. This is known as the *Domain Closure Assumption* (DCA)
- Another common assumption is the Unique-Names Assumption (UNA). If two ground terms can't be proved equal, assume that they are not.

Predicate Completion

Idea: The only objects that satisfy a predicate are those that must

- For example, suppose we have P(a). Can view this as $\forall x. \ x = a \rightarrow P(x)$ the *if*-half of a definition
- Can add the *only if* part: $\forall x. P(x) \rightarrow x = a$
- Giving:
 - $\forall x. \ P(x) \leftrightarrow x = a$

Predicate Completion

- **Definition:** A clause is *solitary* in a predicate *P* if whenever the clause contains a postive instance of *P*, it contains only one instance of *P*.
 - For example, $Q(a) \lor P(a) \lor \neg P(b)$ is not solitary in P $Q(a) \lor R(a) \lor P(b)$ is solitary in P
- Completion of a predicate is only defined for sets of clauses solitary in that predicate

Predicate Completion

- Each clause can be written: $\forall y. \ Q_1 \land \ldots \land Q_m \rightarrow P(t) \ (P \text{ not contained in } Q_i)$ $\forall y. \forall x. \ (x = t) \land Q_1 \land \ldots \land Q_m \rightarrow P(x)$ $\forall x. (\forall y. \ (x = t) \land Q_1 \land \ldots \land Q_m \rightarrow P(x)) \text{ (normal form of clause)}$
- Doing this to every clause gives us a set of clauses of the form: $\forall x. \ E_1 \rightarrow P(x)$

 $\forall x. \ E_n \rightarrow P(x)$

- Grouping these together we get: $\forall x. \ E_1 \lor \ldots \lor E_n \to P(x)$
- Completion becomes: ∀x. P(x) ↔ E₁ ∨ ... ∨ E_n and we can add this to the original set of formulae

Example

- Suppose $\Delta = \{ \forall x. Emu(x) \rightarrow Bird(x), Bird(Tweety), \\ \neg Emu(Tweety) \}$
- We can write this as

 $\forall x. (Emu(x) \lor x = Tweety) \rightarrow Bird(x)$

• Predicate completion of *P* in Δ becomes $\Delta \cup \{ \forall x. Bird(x) \rightarrow Emu(x) \lor x = Tweety \}$

Circumscription

- Idea: Make extension of predicate as small as possible
- Example:

 $\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$ Bird(Tweety), Bird(Sam), Tweety \neq Sam, \neg Flies(Sam)

- Want to be able to conclude *Flies*(*Tweety*) but ¬*Flies*(*Sam*)
- Accept interpretations where Ab predicate is as "small" as possible
- That is, we minimise abnormality

Circumscription

- Given interpretations $I_1 = \langle D, I_1 \rangle$, $I_2 = \langle D, I_2 \rangle$, $I_1 \leq I_2$ iff for every predicate $P \in \mathbf{P}$, $I_1[P] \subseteq I_2[P]$.
- $\Gamma \models_{circ} \phi$ iff for every interpretation I such that I $\models \Gamma$, either I $\models \phi$ or there is a I' < I and I' $\models \Gamma$.
- ϕ is true in all minimal models
- Now consider

 $\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$ $\forall x.Emu(x) \rightarrow Bird(x) \land \neg Flies(x)$ Bird(Tweety)

Reiter's Default Logic (1980)

• Add default rules of the form $\frac{\alpha:\beta}{\gamma}$

 $\circ~$ "If α can be proven and consistent to assume $\beta,$ then conclude γ "

- Often consider *normal* default rules $\frac{\alpha:\beta}{\beta}$
- Example: $\frac{bird(x):flies(x)}{flies(x)}$
- Default theory $\langle D, W \rangle$

D- set of defaults; W- set of facts

- *Extension* of default theory contains as many default conclusions as possible and must be consistent (and is closed under classical consequence *Cn*)
- Concluding whether formula ϕ follows from $\langle D, W \rangle$
 - Sceptical inference: φ occurs in *every* extension of (D, W) Credulous inference:
 φ occurs in *some* extension of (D, W)

Examples

- $W = \{\}; D = \{\frac{p}{p}\}$ no extensions
- $W = \{p \lor r\}; D = \{\frac{p:q}{q}, \frac{r:q}{q}\}$ one extension $\{p \lor r\}$
- $W = \{p \lor q\}; D = \{\frac{:\neg p}{\neg p}, \frac{:\neg q}{\neg q}\}$ two extensions $\{\neg p, p \lor q\}, \{\neg q, p \lor q\}$
- $W = \{emu(Tweety), \forall x.emu(x) \rightarrow bird(x)\}; D = \{\frac{bird(x):flies(x)}{flies(x)}\} one$ extension
- What if we add $\frac{emu(x):\neg flies(x)}{\neg flies(x)}$?
- Poole (1988) achieves a similar effect (but not quite as general) by changing the way the underlying logic is used rather than introducing a new element into the syntax

Default Theories—Properties

Observation: Every normal default theory (default rules are all normal) has an extension

Observation: If a normal default theory has several extensions, they are mutually inconsistent

Observation: A default theory has an inconsistent extension iff *D* is inconsistent **Theorem:** (Semi-monotonicity)

Given two normal default theories $\langle D, W \rangle$ and $\langle D', W \rangle$ such that $D \subseteq D'$ then, for any extension $\mathcal{E}(D, W)$ there is an extension $\mathcal{E}(D', W)$ where $\mathcal{E}(D, W) \subset \mathcal{E}(D', W)$

(The addition of normal default rules does not lead to the retraction of consequences.)

Nonmonotonic Consequence

- Abstract study and analysis of nonmonotonic consequence relation $\[\sim \]$ in terms of general properties Kraus, Lehmann and Magidor (1991)
- Some common properties include:

Supraclassicality If $\phi \vdash \psi$, then $\phi \succ \psi$ Left Logical Equivalence If $\vdash \phi \leftrightarrow \psi$ and $\phi \succ \chi$, then $\psi \succ \chi$ Right Weakening If $\vdash \psi \rightarrow \chi$ and $\phi \succ \psi$, then $\phi \succ \chi$ And If $\phi \succ \psi$ and $\phi \succ \chi$, then $\phi \succ \psi \land \chi$

• Plus many more!

KLM Systems

• Kraus, Lehman and Magidor (1991) study various classes of nonmonotonic consequence relations

• This has been extended since. A good reference for this line of work is Schlechta (1997)

____ >

Summary

- Nonmonotonic reasoning attempts to capture a form of commonsense reasoning
- Nonmonotonic reasoning often deals with inferences based on defaults or 'what is usually the case'
- Belief change and nonmonotonic reasoning: two sides of the same coin?
- Can introduce abstract study of nonmonotonic consequence relations in same way as we study classical consequence relations
- · Similar links exist with conditionals
- One area where nonmonotonic reasoning is important is reasoning about action (dynamic systems)

