GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

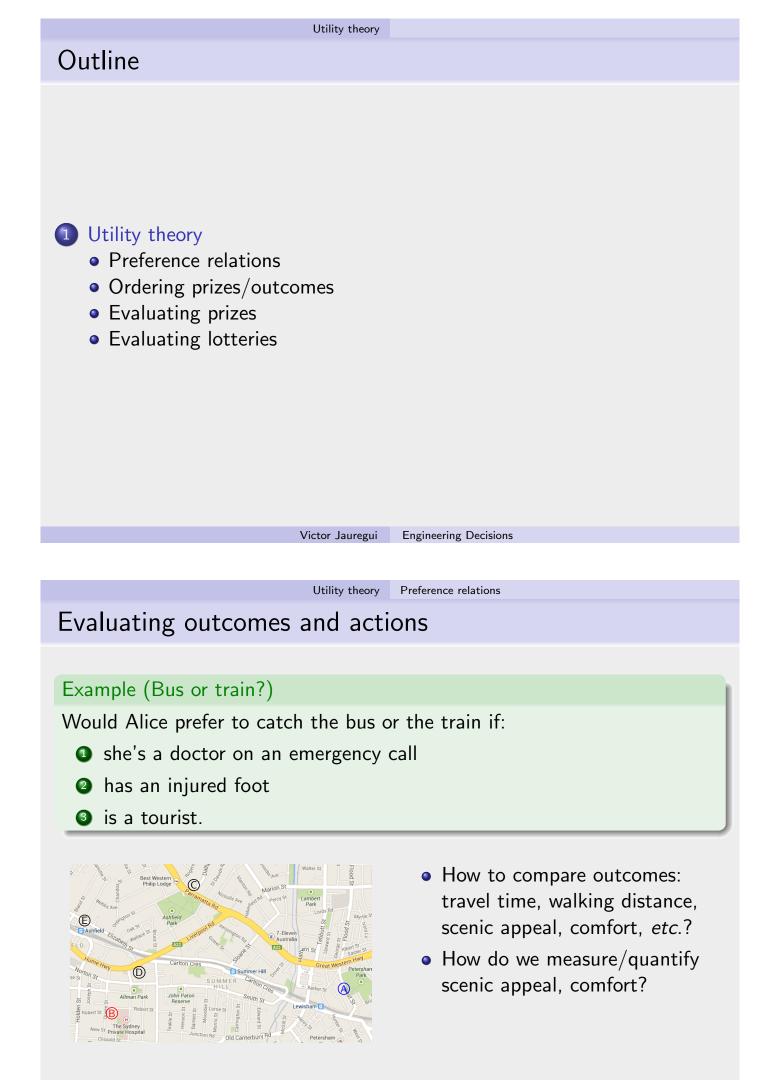
Victor Jauregui

Engineering Decisions

Utility theory

1 Utility theory

- Preference relations
- Ordering prizes/outcomes
- Evaluating prizes
- Evaluating lotteries



Preference and numbers

- So far preference based on numerical values assigned to outcomes and actions (*i.e.*, on v and V respectively); *i.e.*, an agent prefers:
 - outcome ω_1 to ω_2 if $v(\omega_1) > v(\omega_2)$
 - action A to B if V(A) > V(B)
- Does value (which?) determine preference or preference determine value?
- Can meaningful numbers always be assigned? *e.g.*, Alice is a tourist who values comfort and good scenery
- Can rational decisions be made when numerical values aren't given/available?

	Victor Jauregui	Engineering Decisions	
	Utility theory	Preference relations	
Preference and numbers			
• Numbers aren't always required; consider the Maximin rule:			
$\begin{vmatrix} s_1 & s_2 \end{vmatrix}$		$egin{array}{c c} s_1 & s_2 & s_1 & s_2 \end{array}$	
A v_{11} v_{12}		A 20 0 A 9 2	
B v_{21} v_{22}		B 16 8 B 8 3	

• *Maximin* is independent of specific values assigned to outcomes, provided *preference order* is preserved: *i.e.*, $v_{11} > v_{21} > v_{22} > v_{12}$

Exercise

Will this be still be the case for *Hurwicz*'s rule $(\alpha = \frac{1}{4})$? *miniMax Regret*? Laplace's rule?

Qualitative preference: preference without numbers

• Maximin can be reformulated in terms of qualitative preferences only

Preferences

			Тегегенеез
	s_1	s_2	ω_{11} preferred to ω_{21}
Α	ω_{11}	ω_{12}	ω_{21} preferred to ω_{22}
В	ω_{21}	ω_{22}	ω_{22} preferred to ω_{12}

Definition (Qualitative *Maximin*)

Associate an action with its/a least preferred outcome. Choose action whose associated outcome is most preferred.

• Which is least preferred outcome of A? *i.e.*, ω_{11} preferred to ω_{12} ?

Victor Jauregui	Engineering Decisions	
Utility theory	Preference relations	
Preference and value		

Consequences of assigning numerical quantities (*i.e.*, via some value function $v : \Omega \to \mathbb{R}$) to encode preference:

- agent either prefers a to b, or b to a, or agent prefers them equally—agent *indifferent* between a and b
- if agent prefers *a* to *b*, and *b* to *c*, then agent prefers *a* to *c*; *i.e.*, preferences *transitive*

Questions

- Are these conditions justified in practice?
- Do actual (human) agents always behave in this way?
- Can you find counter-examples?

Consistent preferences

- Rational decisions can be made without numerical values so long as an agent's preferences are 'consistent'
- What does 'preference consistency' mean?

			Preferences
	s_1	s_2	ω_{11} preferred to ω_{21}
А	$\omega_{11} \ \omega_{21}$	ω_{12}	ω_{21} preferred to ω_{22}
В	ω_{21}	ω_{22}	ω_{22} preferred to ω_{12}

- Then, for example:
 - ω_{11} preferred to ω_{12}
 - ω_{21} not preferred to ω_{11}

Victor	Jauregui	Er

Utility theory

Engineering Decisions

Preference relations

Preference consistency

- A rational agent's (strict) preferences should be consistent in the sense that, *e.g.*, an agent that:
 - prefers apples (A) to bananas (B) shouldn't prefer bananas to apples
 - prefers apples (A) to bananas (B) and bananas (B) to carrots (C) shouldn't prefer carrots (C) to apples (A)

Exercises

- What would be consequences of the failure of the first property above?
- In the second property above, should the agent then necessarily prefer apples to carrots?
- Preferences is a *binary relations*

Binary relations: overview

Modelling binary relations:

 If A and B are sets, define the Cartesian product of A and B: A × B = {(a, b) | a ∈ A & b ∈ B}; e.g., the set of all coordinate pairs on the Euclidean plane ℝ × ℝ

Definition (Binary relation)

A binary relation R from A to B is a subset of $A \times B$; *i.e.*, $R \subseteq A \times B$. Each ordered pair $(x, y) \in R$ is called an *instance* of R.

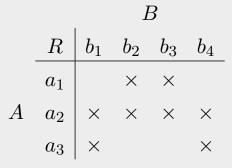
- In infix notation: aRb iff $(a, b) \in R$; e.g., $3 \leq 5$
- If aRb (*i.e.*, $(x, y) \in R$) then the relation R is said to *hold* for x with y; *e.g.*, because $3 \leq 5$, then \leq holds for 3 with 5

Victor Jauregui	Engineering Decisions	
Utility theory	Preference relations	
Binary relations		
Definition (Binary relation on a set A)		
A binary relation, R , on a set A is a subset of $A \times A$; <i>i.e.</i> , $R \subseteq A \times A$.		
• e.g., the binary relation 'is greater than', written $>\subseteq \mathbb{R} imes \mathbb{R}$, is a		
binary relation on the set of real numbers ${\mathbb R}$ (and on ${\mathbb N}$, and on ${\mathbb Q}$)		

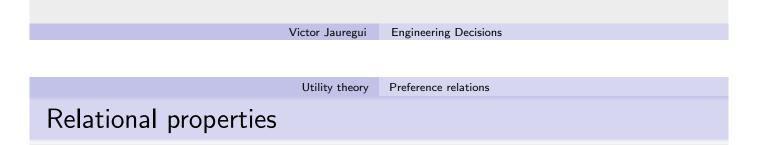
• *e.g.*, the 'greater than' relation (>) holds between real numbers 3 and π (written $3 > \pi$); *i.e.*, $3 > \pi$ is an instance of >

Representing relations

• Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4\}$, then a relation $R \subseteq A \times B$ can be represented by the matrix/table:

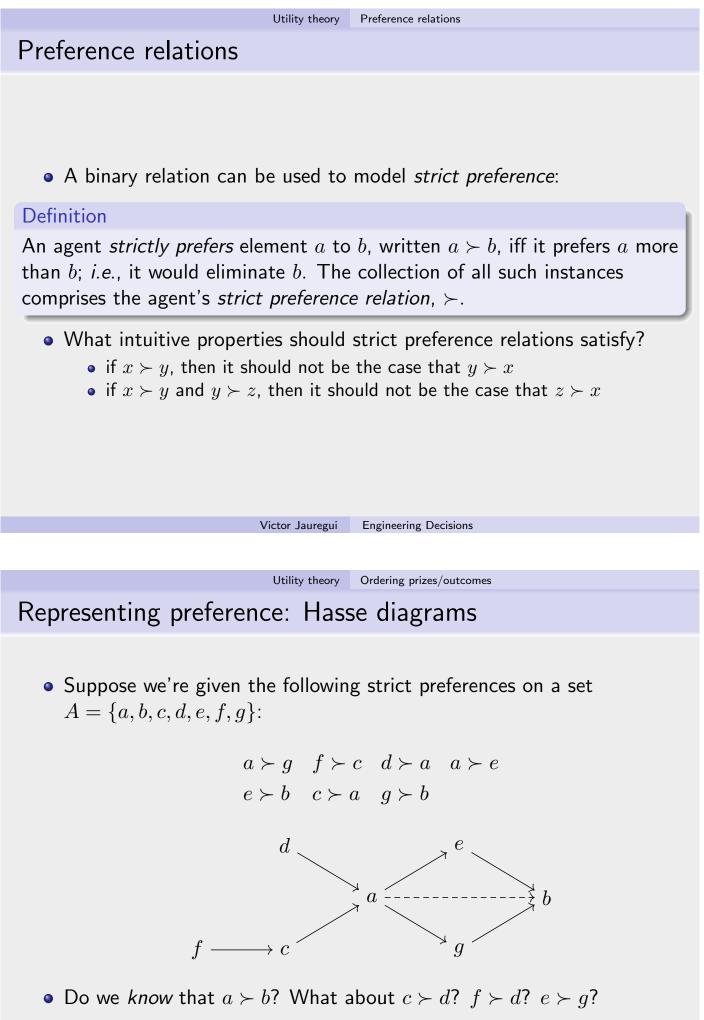


An × appears at entry in row x and column y iff xRy. More succinctly, there's a × at (x, y) iff xRy iff (x, y) is an instance of R. e.g., above a₁Rb₂, a₂Rb₁, and a₃Rb₄, but a₁Rb₁.



Let R be a binary relation on some set A:

- R is reflexive iff for every $x \in A$, xRx; e.g., for every $x \in \mathbb{R}$, x = x, $x \leqslant x$, $x \geqslant x$
- *R* is *irreflexive* iff for every $x \in A$, xRx does not hold; *e.g.*, for every $x \in \mathbb{R}$, $x \neq x$, x < x, x > x do not hold
- R is *transitive* iff for any $x, y, z \in A$, when xRy and yRz, then xRz; e.g., $=, <, \leq$ on \mathbb{R}
- R is symmetric iff for any $x, y \in A$, when xRy, then yRx; e.g., = on \mathbb{R}
- R is *total* iff xRy or yRx; e.g., =, \leq on \mathbb{R}
- R is asymmetric iff whenever xRy then yRx does not hold; e.g., < on \mathbb{R}
- R is antisymmetric iff whenever xRy and yRx, then x = y; e.g., \leq on \mathbb{R}



• $x \succ y$ iff there's a path following arrows from x to y

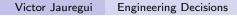
Indifference: equal preference

Definition (Indifference)

If two elements a and b are equally preferred then the agent is said to be indifferent between them, written $a \sim b$. The set of all such instances constitutes an agent's binary relation of indifference. The indifference class of a is $[a] = \{b \mid a \sim b\}$.

Definition (Weak preference)

Element *a* is *weakly preferred* to *b*, written $a \succeq b$, iff *a* is strictly preferred to *b* or the two are equally preferred; *i.e.*, *a* is at least as preferred as *b*; *i.e.*, $a \succeq b$ iff $a \succ b$ or $a \sim b$.

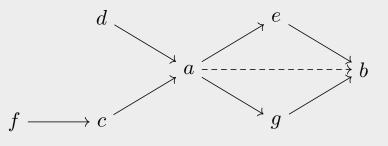


Utility theory Ordering prizes/outcomes

Representing preference: Hasse diagrams

• Suppose we're given the following strict preferences on a set $A = \{a, b, c, d, e, f, g\}$:

$$\begin{array}{lll} a \succ g & f \succ c & d \succ a & a \succ e \\ e \succ b & c \succ a & g \succ b \end{array}$$



- Do we know that $a \succ b$? What about $c \succ d$? $f \succ d$? $e \succ g$?
- $x \succ y$ iff there's a path following arrows from x to y

Indifference properties

The following are intuitive properties of indifference:

- if $x \sim y$, then $y \sim x$
- if $x \sim y$ and $y \sim z$, then $x \sim z$
- $x \sim x$ holds for any $x \in A$

Combined properties:

- if $x \sim y$ and $z \succ x$, then $z \succ y$
- if $x \sim y$ and $x \succ z$, then $y \succ z$

Note that, in the previous problem, it would be *inconsistent* for $c \sim d$ and $f \sim d$, as $f \succ c$, which would imply $f \succ d$.

Victor Jauregui Engineering Decisions

Utility theory Ordering prizes/outcomes

Axiomatisation of consistent weak preference

- What does it mean for an agent's preferences to be consistent/rational?
- Regard \succeq as the fundamental/primitive notion, and interpret $x \succeq y$ as "x is at least as preferred as y"
- The following axioms characterise *consistent preference*

Axiom 1: Transitivity

The relation \succeq is transitive; *i.e.*, preference accumulates.

Axiom 2: Comparability

The relation \succeq is total; *i.e.*, every outcome is comparable.

Derived definitions

From the basic definition of \succeq we can define indifference and strict preference as *derived notions*:

Definition (Indifference)

The relation of *indifference*, denoted \sim , is defined by: $x \sim y$ iff $x \succeq y \& y \succeq x$.

Definition (Strict preference)

The relation of *strict preference*, denoted \succ , is defined by: $x \succ y$ iff $y \succeq x$ does not hold.

Victor Jauregui Engineering Decisions

Ordering prizes/outcomes

Ordinal value functions

Definition (Ordinal value function)

An ordinal value function on a 'preference set' (A, \succeq) is a function $v: A \to \mathbb{R}$ such that $v(x) \ge v(y)$ iff $x \succeq y$.

Utility theory

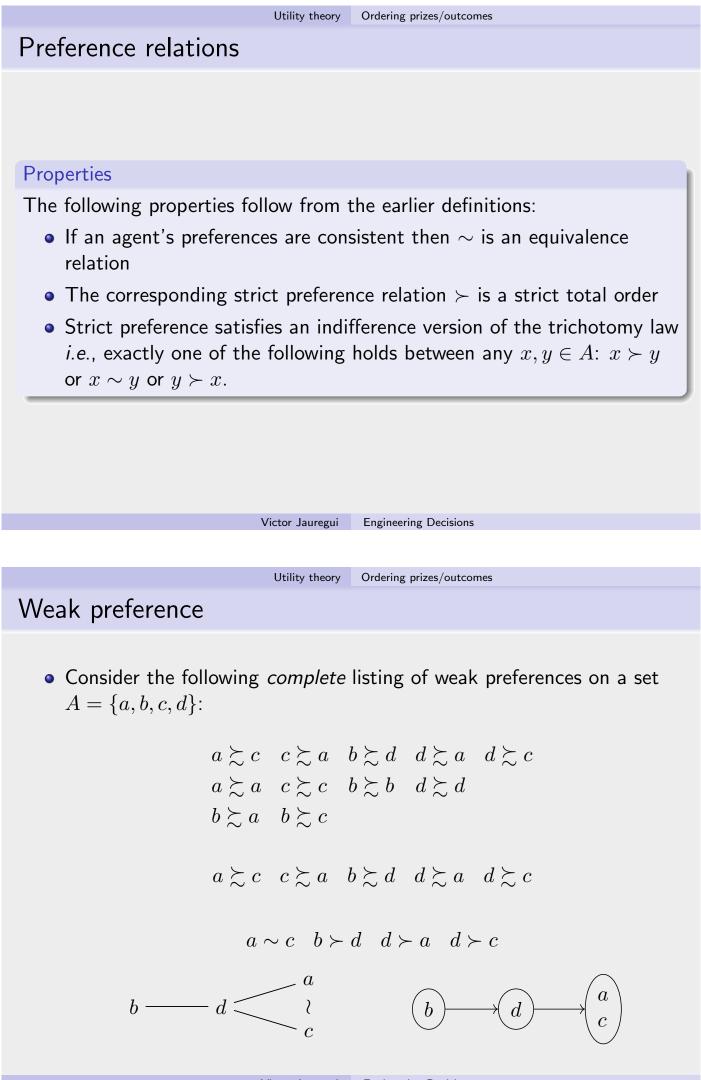
Exercise

Show that for any ordinal value function v:

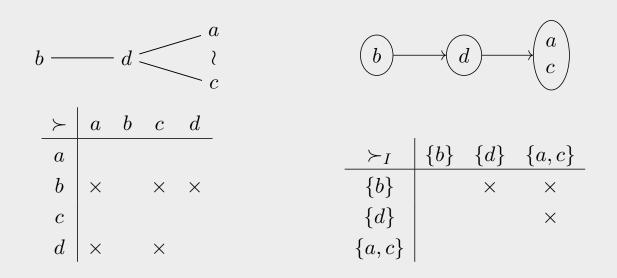
- v(x) > v(y) iff $x \succ y$
- v(x) = v(y) iff $x \sim y$

Theorem (Consistency)

For any consistent preference relation there exists an ordinal value function.



Generating rankings

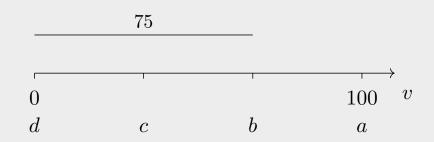


- The rank of x is r(x) = number of \times in x's row; e.g., r(b) = 2, r(d) = 1, and r(a) = r(c) = 0.
- This ranking is an ordinal value function

Victor Jauregui	Engineering Decisions	
Utility theory	Ordering prizes/outcomes	
Ranking		
$b \longrightarrow d$		
Definition (Rank)		
The <i>rank</i> of an indifference is defined by the successive values assigned to indifference class when the lowest indifference class is assigned rank 0.		
<i>i.e.</i> , the ranks above are $0, 1, 2, \ldots$		

Evaluating intermediate prizes

- Suppose the prizes in a lottery ℓ have been ordered by preference:
 a ≻ b ≻ c ≻ d.
- Choose fixed reference values for the best and worst prizes, a and d: e.g., v(a) = 100 and v(d) = 0



- Which values should be assigned to b? $100 \times rank(b)/rank(a)$?
- Agent's preferences: $b \sim \left[\frac{3}{4} : a | \frac{1}{4} : d\right]$
- Then v(b) should be $V_B([\frac{3}{4}:a|\frac{1}{4}:d])$; *i.e.*, $v(b) = \frac{3}{4} \times 100 = 75$

```
Victor Jauregui
```

```
Engineering Decisions
```

Evaluating intermediate prizes

$$\begin{array}{c|c} v(x) - v(d) \\ \hline \\ v(a) - v(d) \\ \hline \\ v(d) \\ d \\ c(x) \\ v(x) \\ c(a) \\ v(a) \\ v($$

Utility theory Evaluating prizes

In general, for prize x such that $x \sim [p_x : a|(1-p_x) : d]$, for $0 \leq p_x \leq 1$, assign value v(x), where:

$$\frac{v(x) - v(d)}{v(a) - v(d)} = p_x$$

i.e., $v(x) = \alpha p_x + \beta$, where $\alpha = v(a) - v(d)$ and $\beta = v(d)$

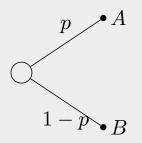
Binary lotteries

Definition (Binary lottery)

A *binary lottery* is a lottery in which at most two possible prizes have non-zero probability: *i.e.*, of the form $\ell = [p : A | (1 - p) : B]$.

Utility theory

Evaluating prizes



e.g., the lottery for tossing a fair coin: $\ell = [\frac{1}{2} : h|\frac{1}{2} : t]$.

Victor Jauregui Engineering Decisions

Evaluating prizes

Reference lotteries

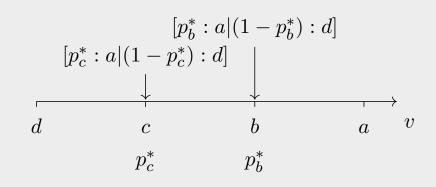
Definition (Reference lottery)

Let ω_M and ω_m be, respectively, the best and worst possible prizes $(\omega_M \succ \omega_m)$. A reference lottery, ℓ^* , is a binary lottery:

Utility theory

$$\ell^* = [p:\omega_M | (1-p):\omega_m]$$

If prize $x \sim \ell_x^* = [p_x^* : \omega_M | (1 - p_x^*) : \omega_m]$, then ℓ_x^* is called the *reference lottery* for x, and p_x^* is called the *reference probability* of x.



Victor Jauregui Engineering Decisions

Utility

Axiom: continuity

If $a \succeq b \succeq c$ then there is some $p \in [0, 1]$, such that:

 $b \sim [p:a|(1-p):c]$

Evaluating prizes

Utility theory

Interpretation: Every intermediate prize is preferred equally to some lottery of the two extremal prizes.

Definition (Utility of a prize)

Define function $u: \Omega \to \mathbb{R}$, such that if $\omega \sim \ell_{\omega}^* = [p_{\omega}^*: \omega_M | (1 - p_{\omega}^*): \omega_m]$, then $u(\omega) = V_B(\ell_{\omega}^*)$ (where $0 \leq p_{\omega}^* \leq 1$).

Interpretation: The utility of a prize is proportional to the reference probability of the prize; specifically $u(\omega) = p_{\omega}^*(v(\omega_M) - v(\omega_m)) + v(\omega_m)$.

Victor Jauregui	Engineering Decisions
-----------------	-----------------------

Evaluating lotteries

Preferences over lotteries

- Ultimately decisions must involve preference over lotteries/actions
- Define preference over lotteries, \succeq_L , as well as over outcomes

Utility theory

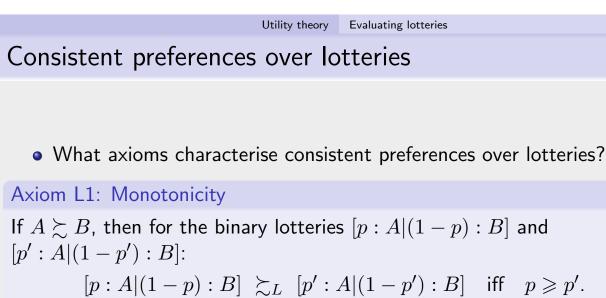
Definition (Lottery preference)

For lotteries ℓ and ℓ' , we write $\ell \succeq_L \ell'$ iff ℓ is at least as preferred as ℓ' .

Definition (Inductive definition of lotteries)

For any $n \in \mathbb{N}$, and p_1, \ldots, p_n , where $0 \leq p_i \leq 1$ and $\sum_i p_i = 1$:

- if $\omega\in\Omega$ is a prize, then $[\omega]$ is a lottery
- if ℓ_1,\ldots,ℓ_n are lotteries, then $[p_1:\ell_1|\ldots|p_n:\ell_n]$ is a lottery
- Note that this means that lotteries in general may have other lotteries as prizes



- Interpretation: when the prizes in two lotteries are the same, the lottery which gives a better chance of the more preferred prize should be preferred
- This justifies the use of reference lotteries/probabilities to evaluate outcomes

	Victor Jauregui	Engineering Decisions
	Utility theory	Evaluating lotteries
Composite lotteries		

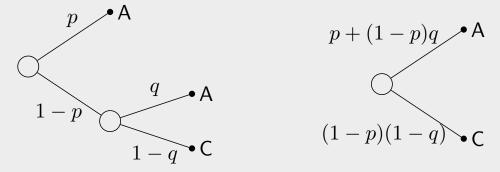
Lotteries may have other lotteries as prizes; *i.e.*, they may be composed of other lotteries; *e.g.*,

 $\ell = \left[p:A|1-p:\left[q:B|1-q:C\right]\right]$

Agents should be indifferent between similar lotteries; e.g., $\ell \sim_L \ell'$ above.

Composite lotteries: combination

Repeated outcomes can be combined/merged; e.g.,



These two should be equivalent:

 $[p:A|1-p:[q:A|1-q:C]] \sim_L [p+(1-p)q:A|(1-p)(1-q):C]$

Victor Jauregui Engineering Decisions

Utility theory Evaluating lotteries

Reduction of composite lotteries

Axiom: substitution of equivalents

If $\ell \sim \ell'$, then any substitution of one for the other in a composite lottery will yield lotteries that equally preferred.

Definition (Simple and composite lotteries)

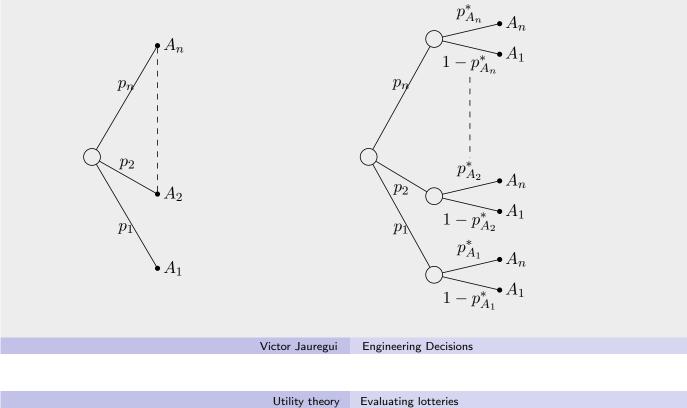
A *composite lottery* is one for which at least one prize is itself a lottery. A lottery which is not composite is said to be *simple*.

Axiom: lottery reduction

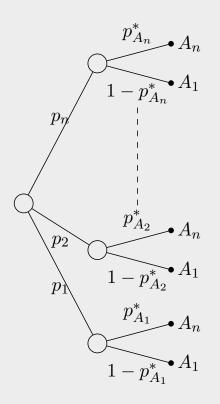
Composite lotteries can be reduced to equivalent (in regard to indifference) simple lotteries by combining probabilities in the usual way.

Normal lottery form

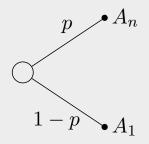
Suppose $A_n \succeq A_{n-1} \succeq \cdots \succeq A_1$, with $A_n \succ A_1$. In lottery $\ell = [p_1 : A_1 | p_2 : A_2 | \dots | p_n : A_n]$, replace A_i with $[p_{A_i}^* : A_n | (1 - p_{A_i}^*) : A_1]$.



Standard lottery reduction



The lottery on the left can be combined to:



where

$$p = p_1 p_{A_1}^* + p_2 p_{A_2}^* + \dots + p_n p_{A_n}^*.$$

Since $p_A^* = u(A)$, this gives:

$$p = p_1 u(A_1) + \dots + p_n u(A_n)$$

Utility theory

Axioms

- consistent preferences: extended to lotteries
- monotonicity: between binary lotteries
- substitution of equivalents
- *reduction of composite lotteries*: by flattening, merging outcomes, and combining probabilities
- continuity: each outcome has an equivalent binary (standard) lottery

Theorem (Utility existence)

If the above axioms are satisfied, then there exists a linear function $u: \Omega \to \mathbb{R}$ such that $\omega_1 \succeq \omega_2$ iff $u(\omega_1) \ge u(\omega_2)$. Moreover, each u can be extended to a linear function U over lotteries, such that $\ell \succeq \ell'$ iff $U(\ell) \ge U(\ell')$, where $U(\ell) = V_B(\ell) = E(u)$.

Victor Jauregui Engineering Decisions

Utility theory Evaluating lotteries

The Maximal Utility Principle

Proof

By continuity assign $u(\omega) = p_{\omega}^*$ from ω 's equivalent reference lottery ℓ_{ω}^* . Reduce each lottery ℓ to its equivalent reference lottery $[p_{\ell}: \omega_M | (1 - p_{\ell}) : \omega_m]$. Moreover, by monotonicity $\ell \succeq \ell'$ iff $p_{\ell} \ge p_{\ell'}$; *i.e.*, iff $p_1 u(A_1) + \cdots + p_n u(A_n) \ge p'_1 u(A_1) + \cdots + p'_n u(A_n)$. But these are just $E_p(u) \ge E_{p'}(u)$. For lottery ℓ set:

$$U(\ell) = V_B(\ell) = E(u) = p_1 u(A_1) + \dots + p_n u(A_n)$$

Maximal Utility Principle (MUP)

Rational agents prefer lotteries with greater expected utility over the prizes.

The MUP verifies that the *Bayes* decision rule applied to utilities is the rational rule to use in decision problems involving risk.

Utility: summary

- Preference is the fundamental notion in evaluating outcomes and actions/strategies
- Preference is a binary relation over outcomes/strategies/lotteries
- Consistent preferences lead to well-defined 'utilities' with which measure/quantify our preferences
- *Bayes* rule is *the* rational decision rule for evaluating strategies under risk