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Utility theory Preference relations

Evaluating outcomes and actions

Example (Bus or train?)

Would Alice prefer to catch the bus or the train if:

1 she’s a doctor on an emergency call

2 has an injured foot

3 is a tourist.

A

B

C

D

E

How to compare outcomes:
travel time, walking distance,
scenic appeal, comfort, etc.?

How do we measure/quantify
scenic appeal, comfort?
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Utility theory Preference relations

Preference and numbers

So far preference based on numerical values assigned to outcomes and
actions (i.e., on v and V respectively); i.e., an agent prefers:

outcome ω1 to ω2 if v(ω1) > v(ω2)
action A to B if V (A) > V (B)

Does value (which?) determine preference or preference determine
value?

Can meaningful numbers always be assigned? e.g., Alice is a tourist
who values comfort and good scenery

Can rational decisions be made when numerical values aren’t
given/available?
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Preference and numbers

Numbers aren’t always required; consider the Maximin rule:

s1 s2

A v11 v12

B v21 v22

s1

20

16

s1 s2 s1 s2

A 20 0

B 16 8

s1

20

16

s1 s2 s1 s2

A 9 2

B 8 3

s1

9

8

s1 s2

Maximin is independent of specific values assigned to outcomes,
provided preference order is preserved: i.e., v11 > v21 > v22 > v12

Exercise

Will this be still be the case for Hurwicz’s rule (α = 1
4)? miniMax Regret?

Laplace’s rule?
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Qualitative preference: preference without numbers

Maximin can be reformulated in terms of qualitative preferences only

s1 s2

A ω11 ω12

B ω21 ω22

Preferences

ω11 preferred to ω21

ω21 preferred to ω22

ω22 preferred to ω12

Definition (Qualitative Maximin)

Associate an action with its/a least preferred outcome. Choose action
whose associated outcome is most preferred.

Which is least preferred outcome of A? i.e., ω11 preferred to ω12?
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Preference and value

Consequences of assigning numerical quantities (i.e., via some value
function v : Ω→ R) to encode preference:

agent either prefers a to b, or b to a, or agent prefers them
equally—agent indifferent between a and b

if agent prefers a to b, and b to c, then agent prefers a to c; i.e.,
preferences transitive

Questions

Are these conditions justified in practice?

Do actual (human) agents always behave in this way?

Can you find counter-examples?

Victor Jauregui Engineering Decisions



Utility theory Preference relations

Consistent preferences

Rational decisions can be made without numerical values so long as
an agent’s preferences are ‘consistent’

What does ‘preference consistency’ mean?

s1 s2

A ω11 ω12

B ω21 ω22

Preferences

ω11 preferred to ω21

ω21 preferred to ω22

ω22 preferred to ω12

Then, for example:

ω11 preferred to ω12

ω21 not preferred to ω11
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Preference consistency

A rational agent’s (strict) preferences should be consistent in the
sense that, e.g., an agent that:

prefers apples (A) to bananas (B) shouldn’t prefer bananas to apples
prefers apples (A) to bananas (B) and bananas (B) to carrots (C)
shouldn’t prefer carrots (C) to apples (A)

Exercises

What would be consequences of the failure of the first property above?

In the second property above, should the agent then necessarily prefer apples
to carrots?

Preferences is a binary relations
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Binary relations: overview

Modelling binary relations:

If A and B are sets, define the Cartesian product of A and B:
A×B = {(a, b) | a ∈ A & b ∈ B}; e.g., the set of all coordinate
pairs on the Euclidean plane R× R

Definition (Binary relation)

A binary relation R from A to B is a subset of A×B; i.e., R ⊆ A×B.
Each ordered pair (x, y) ∈ R is called an instance of R.

In infix notation: aRb iff (a, b) ∈ R; e.g., 3 6 5

If aRb (i.e., (x, y) ∈ R) then the relation R is said to hold for x with
y; e.g., because 3 6 5, then 6 holds for 3 with 5
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Binary relations

Definition (Binary relation on a set A)

A binary relation, R, on a set A is a subset of A×A; i.e., R ⊆ A×A.

e.g., the binary relation ‘is greater than’, written > ⊆ R× R, is a
binary relation on the set of real numbers R (and on N, and on Q)

e.g., the ‘greater than’ relation (>) holds between real numbers 3 and
π (written 3 > π); i.e., 3 > π is an instance of >
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Utility theory Preference relations

Representing relations

Let A = {a1, a2, a3} and B = {b1, b2, b3, b4}, then a relation
R ⊆ A×B can be represented by the matrix/table:

B

R b1 b2 b3 b4

a1 × ×
A a2 × × × ×

a3 × ×

An × appears at entry in row x and column y iff xRy. More
succinctly, there’s a × at (x, y) iff xRy iff (x, y) is an instance of R.
e.g., above a1Rb2, a2Rb1, and a3Rb4, but a16Rb1.
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Relational properties

Let R be a binary relation on some set A:

R is reflexive iff for every x ∈ A, xRx; e.g., for every x ∈ R, x = x, x 6 x,
x > x

R is irreflexive iff for every x ∈ A, xRx does not hold; e.g., for every x ∈ R,
x 6= x, x < x, x > x do not hold

R is transitive iff for any x, y, z ∈ A, when xRy and yRz, then xRz; e.g.,
=, <,6 on R
R is symmetric iff for any x, y ∈ A, when xRy, then yRx; e.g., = on R
R is total iff xRy or yRx; e.g., =, 6 on R
R is asymmetric iff whenever xRy then yRx does not hold; e.g., < on R
R is antisymmetric iff whenever xRy and yRx, then x = y; e.g., 6 on R
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Preference relations

A binary relation can be used to model strict preference:

Definition

An agent strictly prefers element a to b, written a � b, iff it prefers a more
than b; i.e., it would eliminate b. The collection of all such instances
comprises the agent’s strict preference relation, �.

What intuitive properties should strict preference relations satisfy?

if x � y, then it should not be the case that y � x
if x � y and y � z, then it should not be the case that z � x
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Representing preference: Hasse diagrams

Suppose we’re given the following strict preferences on a set
A = {a, b, c, d, e, f, g}:

a � g f � c d � a a � e
e � b c � a g � b

d

c

a

e

b

gf

Do we know that a � b? What about c � d? f � d? e � g?

x � y iff there’s a path following arrows from x to y
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Utility theory Ordering prizes/outcomes

Indifference: equal preference

Definition (Indifference)

If two elements a and b are equally preferred then the agent is said to be
indifferent between them, written a ∼ b. The set of all such instances
constitutes an agent’s binary relation of indifference. The indifference class
of a is [a] = {b | a ∼ b}.

Definition (Weak preference)

Element a is weakly preferred to b, written a % b, iff a is strictly preferred
to b or the two are equally preferred; i.e., a is at least as preferred as b;
i.e., a % b iff a � b or a ∼ b.
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Representing preference: Hasse diagrams

Suppose we’re given the following strict preferences on a set
A = {a, b, c, d, e, f, g}:

a � g f � c d � a a � e
e � b c � a g � b

d

c

a

e

b

gf

Do we know that a � b? What about c � d? f � d? e � g?

x � y iff there’s a path following arrows from x to y
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Utility theory Ordering prizes/outcomes

Indifference properties

The following are intuitive properties of indifference:

if x ∼ y, then y ∼ x
if x ∼ y and y ∼ z, then x ∼ z
x ∼ x holds for any x ∈ A

Combined properties:

if x ∼ y and z � x, then z � y
if x ∼ y and x � z, then y � z

Note that, in the previous problem, it would be inconsistent for c ∼ d and
f ∼ d, as f � c, which would imply f � d.
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Axiomatisation of consistent weak preference

What does it mean for an agent’s preferences to be
consistent/rational?

Regard % as the fundamental/primitive notion, and interpret x % y as
“x is at least as preferred as y”

The following axioms characterise consistent preference

Axiom 1: Transitivity

The relation % is transitive; i.e., preference accumulates.

Axiom 2: Comparability

The relation % is total; i.e., every outcome is comparable.
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Derived definitions

From the basic definition of % we can define indifference and strict
preference as derived notions:

Definition (Indifference)

The relation of indifference, denoted ∼, is defined by:
x ∼ y iff x % y & y % x.

Definition (Strict preference)

The relation of strict preference, denoted �, is defined by:
x � y iff y % x does not hold.
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Ordinal value functions

Definition (Ordinal value function)

An ordinal value function on a ‘preference set’ (A,%) is a function
v : A→ R such that v(x) > v(y) iff x % y.

Exercise

Show that for any ordinal value function v:

v(x) > v(y) iff x � y
v(x) = v(y) iff x ∼ y

Theorem (Consistency)

For any consistent preference relation there exists an ordinal value function.
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Utility theory Ordering prizes/outcomes

Preference relations

Properties

The following properties follow from the earlier definitions:

If an agent’s preferences are consistent then ∼ is an equivalence
relation

The corresponding strict preference relation � is a strict total order

Strict preference satisfies an indifference version of the trichotomy law
i.e., exactly one of the following holds between any x, y ∈ A: x � y
or x ∼ y or y � x.
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Weak preference

Consider the following complete listing of weak preferences on a set
A = {a, b, c, d}:

a % c c % a b % d d % a d % c

a % a c % c b % b d % d

b % a b % c

a % c c % a b % d d % a d % c

a ∼ c b � d d � a d � c

b d

a

c
o b d

a
c
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Generating rankings

b d

a

c
o

� a b c d

a

b × × ×
c

d × ×

b d
a
c

�I {b} {d} {a, c}
{b} × ×
{d} ×
{a, c}

The rank of x is r(x) = number of ×in x’s row; e.g.,
r(b) = 2, r(d) = 1, and r(a) = r(c) = 0.

This ranking is an ordinal value function
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Ranking

b d
a
c

Definition (Rank)

The rank of an indifference is defined by the successive values assigned to
indifference class when the lowest indifference class is assigned rank 0.

i.e., the ranks above are 0, 1, 2, . . .

Victor Jauregui Engineering Decisions



Utility theory Evaluating prizes

Evaluating intermediate prizes

Suppose the prizes in a lottery ` have been ordered by preference:
a � b � c � d.

Choose fixed reference values for the best and worst prizes, a and d:
e.g., v(a) = 100 and v(d) = 0

v100

abc

0

d

75

Which values should be assigned to b? 100× rank(b)/rank(a)?

Agent’s preferences: b ∼ [34 : a|14 : d]

Then v(b) should be VB([34 : a|14 : d]); i.e., v(b) = 3
4 × 100 = 75
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Evaluating intermediate prizes

vv(a)

a

v(x)

x

v(d)

d

v(a)− v(d)

v(x)− v(d)

In general, for prize x such that x ∼ [px : a|(1− px) : d], for 0 6 px 6 1,
assign value v(x), where:

v(x)− v(d)

v(a)− v(d)
= px

i.e., v(x) = αpx + β, where α = v(a)− v(d) and β = v(d)
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Utility theory Evaluating prizes

Binary lotteries

Definition (Binary lottery)

A binary lottery is a lottery in which at most two possible prizes have
non-zero probability: i.e., of the form ` = [p : A|(1− p) : B].

B1− p

Ap

e.g., the lottery for tossing a fair coin: ` = [12 : h|12 : t].
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Reference lotteries

Definition (Reference lottery)

Let ωM and ωm be, respectively, the best and worst possible prizes
(ωM � ωm). A reference lottery, `∗, is a binary lottery:

`∗ = [p : ωM |(1− p) : ωm]

If prize x ∼ `∗x = [p∗x : ωM |(1− p∗x) : ωm], then `∗x is called the reference
lottery for x, and p∗x is called the reference probability of x.

d c b a

[p∗b : a|(1− p∗b) : d]

p∗b

[p∗c : a|(1− p∗c) : d]

p∗c

v
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Utility

Axiom: continuity

If a % b % c then there is some p ∈ [0, 1], such that:

b ∼ [p : a|(1− p) : c]

Interpretation: Every intermediate prize is preferred equally to some lottery
of the two extremal prizes.

Definition (Utility of a prize)

Define function u : Ω→ R, such that if ω ∼ `∗ω = [p∗ω : ωM |(1− p∗ω) : ωm],
then u(ω) = VB(`∗ω) (where 0 6 p∗ω 6 1).

Interpretation: The utility of a prize is proportional to the reference
probability of the prize; specifically u(ω) = p∗ω(v(ωM )− v(ωm)) + v(ωm).
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Preferences over lotteries

Ultimately decisions must involve preference over lotteries/actions

Define preference over lotteries, %L, as well as over outcomes

Definition (Lottery preference)

For lotteries ` and `′, we write ` %L `
′ iff ` is at least as preferred as `′.

Definition (Inductive definition of lotteries)

For any n ∈ N, and p1, . . . , pn, where 0 6 pi 6 1 and
∑

i pi = 1:

if ω ∈ Ω is a prize, then [ω] is a lottery

if `1, . . . , `n are lotteries, then [p1 : `1| . . . |pn : `n] is a lottery

Note that this means that lotteries in general may have other lotteries
as prizes
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Consistent preferences over lotteries

What axioms characterise consistent preferences over lotteries?

Axiom L1: Monotonicity

If A % B, then for the binary lotteries [p : A|(1− p) : B] and
[p′ : A|(1− p′) : B]:

[p : A|(1− p) : B] %L [p′ : A|(1− p′) : B] iff p > p′.

Interpretation: when the prizes in two lotteries are the same, the
lottery which gives a better chance of the more preferred prize should
be preferred

This justifies the use of reference lotteries/probabilities to evaluate
outcomes
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Composite lotteries

Lotteries may have other lotteries as prizes; i.e., they may be composed of
other lotteries; e.g.,

` =
[
p : A|1− p : [q : B|1− q : C]

]

`

C1− q

Bq
1− p

Ap

`′

C
(1− p)(1− q)

B
(1− p)q

A
p

Agents should be indifferent between similar lotteries; e.g., ` ∼L `
′ above.

Victor Jauregui Engineering Decisions



Utility theory Evaluating lotteries

Composite lotteries: combination

Repeated outcomes can be combined/merged; e.g.,

C1− q

Aq
1− p

Ap

C(1− p)(1− q)

Ap+ (1− p)q

These two should be equivalent:[
p : A|1− p : [q : A|1− q : C]

]
∼L [p+ (1− p)q : A|(1− p)(1− q) : C]
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Reduction of composite lotteries

Axiom: substitution of equivalents

If ` ∼ `′, then any substitution of one for the other in a composite lottery
will yield lotteries that equally preferred.

Definition (Simple and composite lotteries)

A composite lottery is one for which at least one prize is itself a lottery. A
lottery which is not composite is said to be simple.

Axiom: lottery reduction

Composite lotteries can be reduced to equivalent (in regard to
indifference) simple lotteries by combining probabilities in the usual way.
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Normal lottery form

Suppose An % An−1 % · · · % A1, with An � A1.
In lottery ` = [p1 : A1|p2 : A2| . . . |pn : An],
replace Ai with [p∗Ai

: An|(1− p∗Ai
) : A1].

A1

p1

A2

p2

An

pn

A11− p∗A1

An
p∗A1

p1
A11− p∗A2

An
p∗A2

p2

A11− p∗An

An
p∗An

pn
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Standard lottery reduction

A11− p∗A1

An
p∗A1

p1
A11− p∗A2

An
p∗A2

p2

A11− p∗An

An
p∗An

pn

The lottery on the left can be
combined to:

A1
1− p

Anp

where
p = p1p

∗
A1

+ p2p
∗
A2

+ · · ·+ pnp
∗
An

.

Since p∗A = u(A), this gives:

p = p1u(A1) + · · ·+ pnu(An)
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Utility theory

Axioms

consistent preferences: extended to lotteries

monotonicity: between binary lotteries

substitution of equivalents

reduction of composite lotteries: by flattening, merging outcomes,
and combining probabilities

continuity: each outcome has an equivalent binary (standard) lottery

Theorem (Utility existence)

If the above axioms are satisfied, then there exists a linear function
u : Ω→ R such that ω1 % ω2 iff u(ω1) > u(ω2). Moreover, each u can be
extended to a linear function U over lotteries, such that ` % `′ iff
U(`) > U(`′), where U(`) = VB(`) = E(u).
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The Maximal Utility Principle

Proof

By continuity assign u(ω) = p∗ω from ω’s equivalent reference lottery `∗ω .
Reduce each lottery ` to its equivalent reference lottery
[p` : ωM |(1− p`) : ωm]. Moreover, by monotonicity ` % `′ iff p` > p`′ ; i.e.,
iff p1u(A1) + · · ·+ pnu(An) > p′1u(A1) + · · ·+ p′nu(An). But these are
just Ep(u) > Ep′(u). For lottery ` set:

U(`) = VB(`) = E(u) = p1u(A1) + · · ·+ pnu(An)

Maximal Utility Principle (MUP)

Rational agents prefer lotteries with greater expected utility over the prizes.

The MUP verifies that the Bayes decision rule applied to utilities is the
rational rule to use in decision problems involving risk.
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Utility: summary

Preference is the fundamental notion in evaluating outcomes and
actions/strategies

Preference is a binary relation over outcomes/strategies/lotteries

Consistent preferences lead to well-defined ‘utilities’ with which
measure/quantify our preferences

Bayes rule is the rational decision rule for evaluating strategies under
risk
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