Exercise 1. Show that the algorithm solving \textsc{Comp-FVS} from the lecture notes has running time $O^*(4^k)$.

\textbf{Hint.} Use the measure $k + \text{cc}(S)$, where \text{cc}(S) is the number of connected components of $G[S]$.

Exercise 2. Recall that a \textit{cluster graph} is a graph where every connected component is a complete graph.

\begin{tabular}{|l|}
\hline
\textsc{Cluster Vertex Deletion} \\
\hline
\textbf{Input:} & Graph $G = (V,E)$, integer k \\
\textbf{Parameter:} & k \\
\textbf{Question:} & Is there a set of vertices $S \subseteq V$ with $|S| \leq k$ such that $G - S$ is a cluster graph? \\
\hline
\end{tabular}

Recall that G is a cluster graph iff G contains no induced P_3.

- Design an $O^*(2^k)$ time algorithm for \textsc{Cluster Vertex Deletion}.

\textbf{Hints.} (1) Show that the disjoint version of the problem can be solved in polynomial time: given $(G = (V,E), S, k)$ such that $|S| = k+1$ and $G - S$ is a cluster graph, find a $S^* \subseteq V \setminus S$ with $|S^*| \leq k$ such that $G - S^*$ is a cluster graph.

(2) Simplification rule for $v \in V \setminus S$ inducing a P_3 with 2 vertices in S. Reduce to maximum weight matching.

\textbf{Solution sketch.}

\begin{tabular}{|l|}
\hline
\textsc{Disjoint-CVD} \\
\hline
\textbf{Input:} & graph $G = (V,E)$, integer k, cluster vertex deletion set S of size $k + 1$ of G \\
\textbf{Output:} & a cluster vertex deletion set S^* of G with $|S^*| \leq k$ and $S^* \cap S = \emptyset$, if one exists \\
\hline
\end{tabular}

Simplification rules:

- If $G[S]$ contains an induced P_3, then return \textbf{No}.

- If $\exists v \in V \setminus S$ such that $G[S \cup \{v\}]$ contains an induced P_3, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Now each vertex in $V \setminus S$ has either no neighbor in S or is adjacent to all the vertices of exactly one cluster of $G[S]$. Reduce the problem to maximum weighted matching in a bipartite graph where one independent set corresponds to the clusters in $G[S]$ and each vertex in the other independent set corresponds to cliques neighboring exactly one cluster in $G[S]$. It remains to define the edges of the auxiliary graph and their weights.