
Introduction to ROS
COMP3431/9434

Robot Software Architectures

Robot Software Architecture

• A robot’s software has to control a lot of things:
• 2D/3D Cameras, LIDAR, Microphones, etc
• Drive motors, Arm motors
• Vision, Mapping, Navigation
• Task Planning, Motion Planning
• Speech and Natural Language Processing
• ….

Robot Software Architecture

• Component-based software design put each
function in its own module

• Need a communication mechanism between
components

ROS (Robot Operating System)
● Open-source
● NOT an operating system:

● Peer-to-peer comms for distributed processes (nodes).
● Library of drivers, filters (e.g., mapping), behaviours (e.g., navigation)

● Not real-time
● OS agnostic (in theory, but only really works on Ubuntu)
● Language agnostic:

– APIs for Python and C++ and other languages

● ROS Nodes - registration at process startup
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).

ROS Basics

/maps/grid1

SubscribersPublishers Named Topic

*Commonly: one publisher and many subscribers

ROS Basics
● ROS Nodes - registration at process startup.
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).

– ROS Services: remote procedure call (one-to-one).

ServerClient
/maps/enable

Request

Response

Named Service

Client Server

ROS Basics
● ROS Nodes - registration at process startup
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many)
– ROS Services: remote procedure call (one-to-one)

● ROS ActionLib
– Services with incremental feedback

– built using ROS topics

Messages
● Topics and services use a well-defined message format:

– Primitive types (e.g., int8, bool, string, etc).

– User-defined types (e.g., geometry_msgs/Point,
sensor_msgs/LaserScan).

– ROS takes care of generating language bindings
(e.g., C++, Python).

geometry_msgs/Point

float64 x
float64 y
float64 z

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

master

Topic Setup
● TCP/IP model - nodes can run on same or different computers
● ROS master provides directory services
● Scenario: laser node publishes and mapping node subscribes

mapping

laser

masterLaser node registers with master that it is
publishing laser scans on a topic (with some name).

/scan

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterMapping node registers with master that it is
subscribing to the topic name.

/scan

/scan

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterMaster tells mapping node that the laser node
is publishing the topic.

/scan

/scan

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterMapping node initiates direct connection with
laser node.

/scan

/scan

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterLaser node publishes and mapping node
receives laser scan messages.

/scan

/scan

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

● NOTE: In reality a bit more complicated:
– Laser node does not have to register first

– Multiple publishers and multiple subscribers

– But same outcome - peer-to-peer data transfer

mapping

laser

master

/scan

/scan

Node/Topic Example

Nodes in a Distributed System
● Nodes can be on different computers.
● Requires some care:

– Turn off local firewalls

– Environment variables to specify addresses of nodes and master:
● ROS_MASTER_URI - location of the master.
● ROS_HOSTNAME - node will register with master using this value.

– Safest to use IP addresses (not hostnames).

export ROS_MASTER_URI=http://192.168.1.2:11311
export ROS_HOSTNAME=192.168.1.5

IP Address of robot

Packages – Flexible Structure
● Dependencies to other packages.
● Custom messages and service definitions.
● Specify nodes - 0 or more.
● Libraries – export for use by other packages.

Catkin Workspaces
● Used for compiling and running a catkin system.
● Workspace layout:

● Catkin tools are run within workspace directory.
● To compile your workspace:

catkin_ws/
src/my_package/
build/
devel/

- individual packages placed here

- install location for development files

$ cd catkin_ws
$ catkin_make

Catkin Packages
● Catkin – the ROS build system:

– Combines CMake (popular C++ build tool) and some Python components.
● User-built components are organised in packages.
● A typical package:

● Use the Catkin tools: catkin_create_pkg my_package depend1 ...

mypackage/
CMakeLists.txt
package.xml
src/
include/
scripts/
setup.py

- CMake building
- dependencies between packages
- source directory: C++/Python/Java/etc
- typical for C++ headers
- typical for Python
- python installation file

Names and Namespaces - Warning
● ROS uses namespaces in different contexts.
● Positive: easy to avoid name clashes.
● Negative: can create confusion.
● Do not confuse namespace usage in:

– Node names.
– Topic names.
– Frames of reference – to be discussed later.

● Node name “/mynode/laser” is different from frame “/mynode/laser”.

Sample Code
● Create a simple publisher and subscriber (both in

Python and C++).
● Simple example - track location of a robot (ignoring

orientation):
– Publisher - publish a geometry_msgs/Point.
– Subscriber can then use data (eg., to locate robot

on map).

Laboratories
● Work through the ROS tutorials.

– http://wiki.ros.org/ROS/Tutorials.
– http://emanual.robotis.com/docs/en/platform/turtlebot3/overview

● First assignment:
– due week 4.
– Turtlebot3 navigation task.
– Get as soon as you can!

