
Reasoning about (Lack of) Knowledge
Christoph Schwering

UNSW Sydney

COMP4418, Week 7

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)

� Proposed Advice Taker (1959)
I Programs with Common Sense
I Improve program behaviour by making statements to it
I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date
Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)
� Proposed Advice Taker (1959)

I Programs with Common Sense

I Improve program behaviour by making statements to it
I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date
Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)
� Proposed Advice Taker (1959)

I Programs with Common Sense
I Improve program behaviour by making statements to it

I Program draws conclusions from its knowledge
I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date
Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)
� Proposed Advice Taker (1959)

I Programs with Common Sense
I Improve program behaviour by making statements to it
I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date
Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)
� Proposed Advice Taker (1959)

I Programs with Common Sense
I Improve program behaviour by making statements to it
I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date
Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)
� Proposed Advice Taker (1959)

I Programs with Common Sense
I Improve program behaviour by making statements to it
I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date

Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
John McCarthy (1927–2011):
� Stanford, MIT, Dartmouth
� Turing Award
� Invented Lisp (1958)
� Invented Garbage Collection (1959)
� Founding Father of AI (with Minsky, Newell, Simon, 1955)
� Proposed Advice Taker (1959)

I Programs with Common Sense
I Improve program behaviour by making statements to it
I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge
I Imperative conclusion: take action

I Remains a vision to this date
Advice Taker motivates (directly or indirectly) a lot of AI
research, in particular what we’ll be studying for the next three
weeks

2 / 36

Motivation
Observation: Non-knowledge is important
Not only what we know is relevant, but also what we don’t know

You don’t know what’s in the gift box.
You’ll treat it with great care.

How can we accurately capture knowledge and non-knowledge?

3 / 36

Motivation
Observation: Non-knowledge is important
Not only what we know is relevant, but also what we don’t know

You don’t know what’s in the gift box.
You’ll treat it with great care.

How can we accurately capture knowledge and non-knowledge?

3 / 36

Motivation
Observation: Non-knowledge is important
Not only what we know is relevant, but also what we don’t know

You know Jane has a phone, but you don’t know her number.
You’ll look it up.

How can we accurately capture knowledge and non-knowledge?

3 / 36

Motivation
Observation: Non-knowledge is important
Not only what we know is relevant, but also what we don’t know

You know Jane is holding ace of spades or of hearts, but not which.
You’ll need a strategy that wins in either case.

How can we accurately capture knowledge and non-knowledge?

3 / 36

Motivation
Observation: Non-knowledge is important
Not only what we know is relevant, but also what we don’t know

You know Jane is holding ace of spades or of hearts, but not which.
You’ll need a strategy that wins in either case.

How can we accurately capture knowledge and non-knowledge? 3 / 36

Overview of the Lecture

� A Logic of Knowledge – The Propositional Fragment
I Why not classical logic?
I Syntax and semantics
I Omniscience, introspection, only-knowing
I Representation theorem

� A Logic of Knowledge – The First-Order Case
� Extensions of the Logic of Knowledge

4 / 36

What Is a Knowledge Base?
� A knowledge base (KB) is a collection of sentences that
describe (a fragment of) the world

� KB completely characterises what the agent knows, i.e.,
I α is known =⇒ KB |= α
I α is not known =⇒ KB 6|= α

=⇒ KB is all the agent knows
� Purpose: evaluate queries

I What is known? What is unknown?
I Similar to a database, but draws interences

� Usually: what is known(what is true
I Agent’s knowledge is incomplete
I Agent should be aware of that

� Usually: knowing is more than database lookup
I α ∈ KB =⇒ α is explicit knowledge (= database lookup)
I KB |= α =⇒ α is implicit knowledge (= logical inference)
I Usually: explicit knowledge((implicit) knowledge

5 / 36

What Is a Knowledge Base?
� A knowledge base (KB) is a collection of sentences that
describe (a fragment of) the world

� KB completely characterises what the agent knows, i.e.,
I α is known =⇒ KB |= α
I α is not known =⇒ KB 6|= α

=⇒ KB is all the agent knows

� Purpose: evaluate queries
I What is known? What is unknown?
I Similar to a database, but draws interences

� Usually: what is known(what is true
I Agent’s knowledge is incomplete
I Agent should be aware of that

� Usually: knowing is more than database lookup
I α ∈ KB =⇒ α is explicit knowledge (= database lookup)
I KB |= α =⇒ α is implicit knowledge (= logical inference)
I Usually: explicit knowledge((implicit) knowledge

5 / 36

What Is a Knowledge Base?
� A knowledge base (KB) is a collection of sentences that
describe (a fragment of) the world

� KB completely characterises what the agent knows, i.e.,
I α is known =⇒ KB |= α
I α is not known =⇒ KB 6|= α

=⇒ KB is all the agent knows
� Purpose: evaluate queries

I What is known? What is unknown?
I Similar to a database, but draws interences

� Usually: what is known(what is true
I Agent’s knowledge is incomplete
I Agent should be aware of that

� Usually: knowing is more than database lookup
I α ∈ KB =⇒ α is explicit knowledge (= database lookup)
I KB |= α =⇒ α is implicit knowledge (= logical inference)
I Usually: explicit knowledge((implicit) knowledge

5 / 36

What Is a Knowledge Base?
� A knowledge base (KB) is a collection of sentences that
describe (a fragment of) the world

� KB completely characterises what the agent knows, i.e.,
I α is known =⇒ KB |= α
I α is not known =⇒ KB 6|= α

=⇒ KB is all the agent knows
� Purpose: evaluate queries

I What is known? What is unknown?
I Similar to a database, but draws interences

� Usually: what is known(what is true
I Agent’s knowledge is incomplete
I Agent should be aware of that

� Usually: knowing is more than database lookup
I α ∈ KB =⇒ α is explicit knowledge (= database lookup)
I KB |= α =⇒ α is implicit knowledge (= logical inference)
I Usually: explicit knowledge((implicit) knowledge

5 / 36

What Is a Knowledge Base?
� A knowledge base (KB) is a collection of sentences that
describe (a fragment of) the world

� KB completely characterises what the agent knows, i.e.,
I α is known =⇒ KB |= α
I α is not known =⇒ KB 6|= α

=⇒ KB is all the agent knows
� Purpose: evaluate queries

I What is known? What is unknown?
I Similar to a database, but draws interences

� Usually: what is known(what is true
I Agent’s knowledge is incomplete
I Agent should be aware of that

� Usually: knowing is more than database lookup
I α ∈ KB =⇒ α is explicit knowledge (= database lookup)
I KB |= α =⇒ α is implicit knowledge (= logical inference)
I Usually: explicit knowledge((implicit) knowledge

5 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r

2. You don’t know that ¬r.

O

KB 6|= ¬r
3. You know that p or q.

O

KB |= (p ∨ q)

4. You don’t know that p.

O

KB 6|= p

5. You don’t know that q.

O

KB 6|= q

6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r

2. You don’t know that ¬r.

O

KB 6|= ¬r

3. You know that p or q.

O

KB |= (p ∨ q)
4. You don’t know that p.

O

KB 6|= p

5. You don’t know that q.

O

KB 6|= q

6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r

2. You don’t know that ¬r.

O

KB 6|= ¬r

3. You know that p or q.

O

KB |= (p ∨ q)

4. You don’t know that p.

O

KB 6|= p

5. You don’t know that q.

O

KB 6|= q
6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r

2. You don’t know that ¬r.

O

KB 6|= ¬r

3. You know that p or q.

O

KB |= (p ∨ q)

4. You don’t know that p.

O

KB 6|= p

5. You don’t know that q.

O

KB 6|= q

6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r
2. You don’t know that ¬r.

O

KB 6|= ¬r
3. You know that p or q.

O

KB |= (p ∨ q)

4. You don’t know that p.

O

KB 6|= p

5. You don’t know that q.

O

KB 6|= q

6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r
2. You don’t know that ¬r.

O

KB 6|= ¬r
3. You know that p or q.

O

KB |= (p ∨ q)
4. You don’t know that p.

O

KB 6|= p

5. You don’t know that q.

O

KB 6|= q

6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r
2. You don’t know that ¬r.

O

KB 6|= ¬r
3. You know that p or q.

O

KB |= (p ∨ q)
4. You don’t know that p.

O

KB 6|= p
5. You don’t know that q.

O

KB 6|= q
6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB 6|= r
2. You don’t know that ¬r.

O

KB 6|= ¬r
3. You know that p or q.

O

KB |= (p ∨ q)
4. You don’t know that p.

O

KB 6|= p
5. You don’t know that q.

O

KB 6|= q
6. You know that p or q, but not which. KB |= ???

O

KB |= (p ∨ q) ∧ p ∧ q

Problem: Classical logic cannot express 6 directly in one formula

Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.

6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ ¬k_p ∧ . . .

Then:
1. You don’t know that r.

O

KB |= ¬k_r
2. You don’t know that ¬r.

O

KB |= ¬k_not_r
3. You know that p or q.

O

KB |= k_p_or_q
4. You don’t know that p.

O

KB |= ¬k_p
5. You don’t know that q.

O

KB |= ¬k_q
6. You know that p or q, but not which.

O

KB |= k_p_or_q ∧ ¬k_p ∧ ¬k_p
Problem: Classical logic cannot express 6 directly in one formula
Idea #1: Compile (p ∨ q ∨ c) to new atoms k_p, k_p_or_q, . . . 7

Does not scale.
6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r.

O

KB |= r = U

2. You don’t know that ¬r.

O

KB |= ¬r = U

3. You know that p or q.

O

KB |= (p ∨ q)
4. You don’t know that p.

O

KB |= p = U

5. You don’t know that q.

O

KB |= q = U

6. You know that p or q, but not which.

O

KB |= (p ∨ q) ∧ p = U ∧ q = U

Problem: Classical logic cannot express 6 directly in one formula
Idea #2: Three-valued logic {0,1,U} 7

How would U ∨ U behave? Is it known? Unknown?
6 / 36

Why Not Classical Logic?
Suppose all you know is (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

Then:
1. You don’t know that r. OKB |= ¬Kr
2. You don’t know that ¬r. OKB |= ¬K¬r
3. You know that p or q. OKB |= K(p ∨ q)
4. You don’t know that p. OKB |= ¬Kp
5. You don’t know that q. OKB |= ¬Kq
6. You know that p or q, but not which.

OKB |= K(p ∨ q) ∧ ¬Kp ∧ ¬Kq

Problem: Classical logic cannot express 6 directly in one formula
Idea #3: Add unary operators O and K to express knowledge 3

6 / 36

The Language ofOLPL

The language of only-knowing (propositional fragment)OLPL:
� p, q, r, . . . atomic propositions
� ¬α “not α”
� (α ∨ β) “α or β”
� (α ∧ β)

def
= ¬(¬α ∨ ¬β)

“α and β”
� (α→ β)

def
= (¬α ∨ β)

“α implies β”
� (α↔ β)

def
= (α→ β) ∧ (β→ α)

“α is equivalent to β”
� Kα “α is known”
� Oα “α is all that is known”

7 / 36

The Language ofOLPL

The language of only-knowing (propositional fragment)OLPL:
� p, q, r, . . . atomic propositions
� ¬α “not α”
� (α ∨ β) “α or β”
� (α ∧ β)

def
= ¬(¬α ∨ ¬β) “α and β”

� (α→ β)
def
= (¬α ∨ β) “α implies β”

� (α↔ β)
def
= (α→ β) ∧ (β→ α) “α is equivalent to β”

� Kα “α is known”
� Oα “α is all that is known”

7 / 36

Recap: Technical Terms (1)
A logical language is a formal language over an alphabet (here:
{p, q, r, . . . , (,),¬,∨,K ,O}) and a grammar (previous slide), i.e.,
rules that allow us to phrase sentences in that language.

The sentences carry no meaning by themselves. We define amodel
theory to give them a semantics, i.e., to define what sort of formal
structure interprets a sentence. Such an interpretation I satisfies a
sentence α, written I |= α, or falsifies it, written I 6|= α.
A typical rule of a semantics is

I |= (α ∨ β) if and only if I |= α or I |= β.
Note that ∨ is a symbol of the logical language, whereas “if and only
if” and “or” are natural language expressions. The rule says that the
symbol “∨” corresponds to the natural language expression “or”.
We will sometimes take the liberty to omit brackets to ease
readability. For instance, we write (p ∨ q ∨ r) instead of
((p∨ q)∨ r) or (p∨ (q∨ r)), implicitly assuming our semantics of ∨
is associative.

8 / 36

Recap: Technical Terms (1)
A logical language is a formal language over an alphabet (here:
{p, q, r, . . . , (,),¬,∨,K ,O}) and a grammar (previous slide), i.e.,
rules that allow us to phrase sentences in that language.
The sentences carry no meaning by themselves. We define amodel
theory to give them a semantics, i.e., to define what sort of formal
structure interprets a sentence. Such an interpretation I satisfies a
sentence α, written I |= α, or falsifies it, written I 6|= α.

A typical rule of a semantics is
I |= (α ∨ β) if and only if I |= α or I |= β.

Note that ∨ is a symbol of the logical language, whereas “if and only
if” and “or” are natural language expressions. The rule says that the
symbol “∨” corresponds to the natural language expression “or”.
We will sometimes take the liberty to omit brackets to ease
readability. For instance, we write (p ∨ q ∨ r) instead of
((p∨ q)∨ r) or (p∨ (q∨ r)), implicitly assuming our semantics of ∨
is associative.

8 / 36

Recap: Technical Terms (1)
A logical language is a formal language over an alphabet (here:
{p, q, r, . . . , (,),¬,∨,K ,O}) and a grammar (previous slide), i.e.,
rules that allow us to phrase sentences in that language.
The sentences carry no meaning by themselves. We define amodel
theory to give them a semantics, i.e., to define what sort of formal
structure interprets a sentence. Such an interpretation I satisfies a
sentence α, written I |= α, or falsifies it, written I 6|= α.
A typical rule of a semantics is

I |= (α ∨ β) if and only if I |= α or I |= β.
Note that ∨ is a symbol of the logical language, whereas “if and only
if” and “or” are natural language expressions. The rule says that the
symbol “∨” corresponds to the natural language expression “or”.

We will sometimes take the liberty to omit brackets to ease
readability. For instance, we write (p ∨ q ∨ r) instead of
((p∨ q)∨ r) or (p∨ (q∨ r)), implicitly assuming our semantics of ∨
is associative.

8 / 36

Recap: Technical Terms (1)
A logical language is a formal language over an alphabet (here:
{p, q, r, . . . , (,),¬,∨,K ,O}) and a grammar (previous slide), i.e.,
rules that allow us to phrase sentences in that language.
The sentences carry no meaning by themselves. We define amodel
theory to give them a semantics, i.e., to define what sort of formal
structure interprets a sentence. Such an interpretation I satisfies a
sentence α, written I |= α, or falsifies it, written I 6|= α.
A typical rule of a semantics is

I |= (α ∨ β) if and only if I |= α or I |= β.
Note that ∨ is a symbol of the logical language, whereas “if and only
if” and “or” are natural language expressions. The rule says that the
symbol “∨” corresponds to the natural language expression “or”.
We will sometimes take the liberty to omit brackets to ease
readability. For instance, we write (p ∨ q ∨ r) instead of
((p∨ q)∨ r) or (p∨ (q∨ r)), implicitly assuming our semantics of ∨
is associative. 8 / 36

Recap: Technical Terms (2)
The form of such an interpretation varies between logics.
Propositional logic uses truth tables, first-order logic usually uses
structures with a domain and interpretation function.
� When an interpretation I satisfies a sentence, we write I |= α.
� When all interpretations satisfy a sentence α, then α is valid
and we write |= α.

� When all interpretations that satisfy some sentence Σ or set of
sentences Σ also satisfy α, we say Σ entails α and write Σ |= α.

Different semantics are possible. What justifies a semantics?
Typically there is a proof theory, and model theory and proof theory
should be equivalent (|= α if and only if ` α). Nevertheless, we will
only focus on the semantics in the next weeks.

9 / 36

Recap: Technical Terms (2)
The form of such an interpretation varies between logics.
Propositional logic uses truth tables, first-order logic usually uses
structures with a domain and interpretation function.
� When an interpretation I satisfies a sentence, we write I |= α.
� When all interpretations satisfy a sentence α, then α is valid
and we write |= α.

� When all interpretations that satisfy some sentence Σ or set of
sentences Σ also satisfy α, we say Σ entails α and write Σ |= α.

Different semantics are possible. What justifies a semantics?
Typically there is a proof theory, and model theory and proof theory
should be equivalent (|= α if and only if ` α). Nevertheless, we will
only focus on the semantics in the next weeks.

9 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.

An epistemic state e is a set of worlds.
�

e,

w |= P ⇐⇒ w[P] = 1

�

e,

w |= ¬α ⇐⇒

e,

w 6|= α

�

e,

w |= (α ∨ β) ⇐⇒

e,

w |= α or

e,

w |= β

�

e,

w |= Kα ⇐⇒ ???
�

e,

w |= Oα ⇐⇒ ???

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.

An epistemic state e is a set of worlds.

�

e,

w |= P ⇐⇒ w[P] = 1

�

e,

w |= ¬α ⇐⇒

e,

w 6|= α

�

e,

w |= (α ∨ β) ⇐⇒

e,

w |= α or

e,

w |= β

�

e,

w |= Kα ⇐⇒ ???
�

e,

w |= Oα ⇐⇒ ???

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.

An epistemic state e is a set of worlds.

�

e,

w |= P ⇐⇒ w[P] = 1

�

e,

w |= ¬α ⇐⇒

e,

w 6|= α

�

e,

w |= (α ∨ β) ⇐⇒

e,

w |= α or

e,

w |= β

�

e,

w |= Kα ⇐⇒ ???
�

e,

w |= Oα ⇐⇒ ???

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.
An epistemic state e is a set of worlds.
�

e,

w |= P ⇐⇒ w[P] = 1

�

e,

w |= ¬α ⇐⇒

e,

w 6|= α

�

e,

w |= (α ∨ β) ⇐⇒

e,

w |= α or

e,

w |= β

�

e,

w |= Kα ⇐⇒ ???
�

e,

w |= Oα ⇐⇒ ???

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.
An epistemic state e is a set of worlds.
� e,w |= P ⇐⇒ w[P] = 1

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= Kα ⇐⇒ ???
� e,w |= Oα ⇐⇒ ???

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.
An epistemic state e is a set of worlds.
� e,w |= P ⇐⇒ w[P] = 1

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= Kα ⇐⇒ for all worlds w′, w′ ∈ e⇒ e,w′ |= α

� e,w |= Oα ⇐⇒ ???

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

The Semantics ofOLPL

Definition: semantics ofOLPL

A world w is a function from the atomic propositions to {0,1}.
An epistemic state e is a set of worlds.
� e,w |= P ⇐⇒ w[P] = 1

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= Kα ⇐⇒ for all worlds w′, w′ ∈ e⇒ e,w′ |= α

� e,w |= Oα ⇐⇒ for all worlds w′, w′ ∈ e⇔ e,w′ |= α

“⇒” stands for natural language expressions “only if”.
“⇔” and “⇐⇒ ” stand for natural language expressions “if and only if”.

10 / 36

Abbreviations
Recall:
� (α ∧ β)

def
= ¬(¬α ∨ ¬β)

� (α→ β)
def
= (¬α ∨ β)

� (α↔ β)
def
= (α→ β) ∧ (β→ α)

∧ should be “and”
→ should be “only if”
↔ should be “if and only if”.
Lemma: abbreviations
� e,w |= α ∧ β ⇐⇒ e,w |= α and e,w |= β

� e,w |= α→ β ⇐⇒ e,w |= α⇒ e,w |= β

� e,w |= α↔ β ⇐⇒ e,w |= α⇔ e,w |= β

Proof on paper 11 / 36

Some Lemmas
Definition: objective, subjective
If φmentions no atoms inside K or O, we say φ is objective.
If σmentions atoms only inside K or O, we say σ is subjective.

� ((p ∨ q) ∧ p ∧ q) is objective
� K((p ∨ q) ∧ ¬Kp ∧ ¬Kq) is subjective

Lemma: objective, subjective
Let φ be objective. Then e,w |= φ ⇐⇒ e′,w |= φ.
Let σ be subjective. Then e,w |= σ ⇐⇒ e,w′ |= σ.

When φ is objective, “w |= φ” stands for “for every e, e,w |= φ”.
When σ is subjective, “e |= σ” stands for “for every w, e,w |= σ”.
Proof on paper

12 / 36

Some Lemmas
Definition: objective, subjective
If φmentions no atoms inside K or O, we say φ is objective.
If σmentions atoms only inside K or O, we say σ is subjective.

� ((p ∨ q) ∧ p ∧ q) is objective
� K((p ∨ q) ∧ ¬Kp ∧ ¬Kq) is subjective

Lemma: objective, subjective
Let φ be objective. Then e,w |= φ ⇐⇒ e′,w |= φ.
Let σ be subjective. Then e,w |= σ ⇐⇒ e,w′ |= σ.

When φ is objective, “w |= φ” stands for “for every e, e,w |= φ”.
When σ is subjective, “e |= σ” stands for “for every w, e,w |= σ”.
Proof on paper

12 / 36

Some Lemmas
Definition: objective, subjective
If φmentions no atoms inside K or O, we say φ is objective.
If σmentions atoms only inside K or O, we say σ is subjective.

� ((p ∨ q) ∧ p ∧ q) is objective
� K((p ∨ q) ∧ ¬Kp ∧ ¬Kq) is subjective

Lemma: objective, subjective
Let φ be objective. Then e,w |= φ ⇐⇒ e′,w |= φ.
Let σ be subjective. Then e,w |= σ ⇐⇒ e,w′ |= σ.

When φ is objective, “w |= φ” stands for “for every e, e,w |= φ”.
When σ is subjective, “e |= σ” stands for “for every w, e,w |= σ”.
Proof on paper 12 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e

⇐⇒ w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)
⇐⇒ w |= (p ∨ q ∨ r) and w |= (p ∨ q ∨ ¬r)
⇐⇒ w[p] = 1 or w[q] = 1 or w[r] = 1, and

w[p] = 1 or w[q] = 1 or w[r] = 0
⇐⇒ w[p] = 1 or w[q] = 1

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e

⇐⇒ w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)
⇐⇒ w |= (p ∨ q ∨ r) and w |= (p ∨ q ∨ ¬r)
⇐⇒ w[p] = 1 or w[q] = 1 or w[r] = 1, and

w[p] = 1 or w[q] = 1 or w[r] = 0
⇐⇒ w[p] = 1 or w[q] = 1

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e
⇐⇒ w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)

⇐⇒ w |= (p ∨ q ∨ r) and w |= (p ∨ q ∨ ¬r)
⇐⇒ w[p] = 1 or w[q] = 1 or w[r] = 1, and

w[p] = 1 or w[q] = 1 or w[r] = 0
⇐⇒ w[p] = 1 or w[q] = 1

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e
⇐⇒ w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)
⇐⇒ w |= (p ∨ q ∨ r) and w |= (p ∨ q ∨ ¬r)

⇐⇒ w[p] = 1 or w[q] = 1 or w[r] = 1, and
w[p] = 1 or w[q] = 1 or w[r] = 0

⇐⇒ w[p] = 1 or w[q] = 1

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e
⇐⇒ w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)
⇐⇒ w |= (p ∨ q ∨ r) and w |= (p ∨ q ∨ ¬r)
⇐⇒ w[p] = 1 or w[q] = 1 or w[r] = 1, and

w[p] = 1 or w[q] = 1 or w[r] = 0

⇐⇒ w[p] = 1 or w[q] = 1

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e
⇐⇒ w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)
⇐⇒ w |= (p ∨ q ∨ r) and w |= (p ∨ q ∨ ¬r)
⇐⇒ w[p] = 1 or w[q] = 1 or w[r] = 1, and

w[p] = 1 or w[q] = 1 or w[r] = 0
⇐⇒ w[p] = 1 or w[q] = 1

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) ?

⇐⇒ for all w, w ∈ e⇒ w |= (p ∨ q)
⇐⇒ for all w, w ∈ e⇒ w |= p or w |= q
⇐⇒ for all w, w ∈ e⇒ w[p] = 1 or w[q] = 1
⇐⇒ for all w, (w[p] = 1 or w[q] = 1

)
⇒
(
w[p] = 1 or w[q] = 1

)
3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) ?
⇐⇒ for all w, w ∈ e⇒ w |= (p ∨ q)

⇐⇒ for all w, w ∈ e⇒ w |= p or w |= q
⇐⇒ for all w, w ∈ e⇒ w[p] = 1 or w[q] = 1
⇐⇒ for all w, (w[p] = 1 or w[q] = 1

)
⇒
(
w[p] = 1 or w[q] = 1

)
3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) ?
⇐⇒ for all w, w ∈ e⇒ w |= (p ∨ q)
⇐⇒ for all w, w ∈ e⇒ w |= p or w |= q

⇐⇒ for all w, w ∈ e⇒ w[p] = 1 or w[q] = 1
⇐⇒ for all w, (w[p] = 1 or w[q] = 1

)
⇒
(
w[p] = 1 or w[q] = 1

)
3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) ?
⇐⇒ for all w, w ∈ e⇒ w |= (p ∨ q)
⇐⇒ for all w, w ∈ e⇒ w |= p or w |= q
⇐⇒ for all w, w ∈ e⇒ w[p] = 1 or w[q] = 1

⇐⇒ for all w, (w[p] = 1 or w[q] = 1
)
⇒
(
w[p] = 1 or w[q] = 1

)
3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) ?
⇐⇒ for all w, w ∈ e⇒ w |= (p ∨ q)
⇐⇒ for all w, w ∈ e⇒ w |= p or w |= q
⇐⇒ for all w, w ∈ e⇒ w[p] = 1 or w[q] = 1
⇐⇒ for all w, (w[p] = 1 or w[q] = 1

)
⇒
(
w[p] = 1 or w[q] = 1

)
3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp ?

⇐⇒ e 6|= Kp
⇐⇒ for some w, w ∈ e and w 6|= p
⇐⇒ for some w, w ∈ e and w[p] 6= 1
⇐⇒ for some w, w[p] = 1 or w[q] = 1, and w[p] 6= 1
⇐⇒ for some w, w[p] 6= 1 and w[q] = 1 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp ?
⇐⇒ e 6|= Kp

⇐⇒ for some w, w ∈ e and w 6|= p
⇐⇒ for some w, w ∈ e and w[p] 6= 1
⇐⇒ for some w, w[p] = 1 or w[q] = 1, and w[p] 6= 1
⇐⇒ for some w, w[p] 6= 1 and w[q] = 1 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp ?
⇐⇒ e 6|= Kp
⇐⇒ for some w, w ∈ e and w 6|= p

⇐⇒ for some w, w ∈ e and w[p] 6= 1
⇐⇒ for some w, w[p] = 1 or w[q] = 1, and w[p] 6= 1
⇐⇒ for some w, w[p] 6= 1 and w[q] = 1 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp ?
⇐⇒ e 6|= Kp
⇐⇒ for some w, w ∈ e and w 6|= p
⇐⇒ for some w, w ∈ e and w[p] 6= 1

⇐⇒ for some w, w[p] = 1 or w[q] = 1, and w[p] 6= 1
⇐⇒ for some w, w[p] 6= 1 and w[q] = 1 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp ?
⇐⇒ e 6|= Kp
⇐⇒ for some w, w ∈ e and w 6|= p
⇐⇒ for some w, w ∈ e and w[p] 6= 1
⇐⇒ for some w, w[p] = 1 or w[q] = 1, and w[p] 6= 1

⇐⇒ for some w, w[p] 6= 1 and w[q] = 1 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp ?
⇐⇒ e 6|= Kp
⇐⇒ for some w, w ∈ e and w 6|= p
⇐⇒ for some w, w ∈ e and w[p] 6= 1
⇐⇒ for some w, w[p] = 1 or w[q] = 1, and w[p] 6= 1
⇐⇒ for some w, w[p] 6= 1 and w[q] = 1 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp 3

� e |= K(p ∨ q) ∧ ¬Kp ∧ ¬Kq ?

⇐⇒ e |= K(p ∨ q) and e |= ¬Kp and e |= ¬Kq 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp 3

� e |= K(p ∨ q) ∧ ¬Kp ∧ ¬Kq ?
⇐⇒ e |= K(p ∨ q) and e |= ¬Kp and e |= ¬Kq 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp 3

� e |= K(p ∨ q) ∧ ¬Kp ∧ ¬Kq 3

� e |= O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)) ?

⇐⇒ for all w, w ∈ e⇔ w |= ((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)) 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp 3

� e |= K(p ∨ q) ∧ ¬Kp ∧ ¬Kq 3

� e |= O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)) ?
⇐⇒ for all w, w ∈ e⇔ w |= ((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)) 3

13 / 36

Examples e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let e def
= {w | w |= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

� w ∈ e ⇐⇒ w[p] = 1 or w[q] = 1

� e |= K(p ∨ q) 3

� e |= ¬Kp 3

� e |= K(p ∨ q) ∧ ¬Kp ∧ ¬Kq 3

� e |= O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)) 3

13 / 36

Logical Omniscience
Logical omniscience means that an agent knows all the
consequences of what they know. In particular, they know all valid
sentences.

Theorem: logical omniscience
If |= α→ β, then |= Kα→ Kβ.
In particular: If |= α, then |= Kα.

Logical omniscience is often problematic:
� Philosophical problem: most agents are not omniscient
� Practical problem: omniscience makes reasoning intractable

We will look at methods to avoid these problems next week.
Proof on paper

14 / 36

Logical Omniscience
Logical omniscience means that an agent knows all the
consequences of what they know. In particular, they know all valid
sentences.
Theorem: logical omniscience
If |= α→ β, then |= Kα→ Kβ.
In particular: If |= α, then |= Kα.

Logical omniscience is often problematic:
� Philosophical problem: most agents are not omniscient
� Practical problem: omniscience makes reasoning intractable

We will look at methods to avoid these problems next week.
Proof on paper

14 / 36

Logical Omniscience
Logical omniscience means that an agent knows all the
consequences of what they know. In particular, they know all valid
sentences.
Theorem: logical omniscience
If |= α→ β, then |= Kα→ Kβ.
In particular: If |= α, then |= Kα.

Logical omniscience is often problematic:
� Philosophical problem: most agents are not omniscient
� Practical problem: omniscience makes reasoning intractable

We will look at methods to avoid these problems next week.
Proof on paper

14 / 36

Only-Knowing

The purpose of only-knowing is to capture a knowledge base.
Knowledge bases are usually objective.
The corresponding epistemic state is then unique:
Theorem: unique-model property
Let φ be objective. Then there is a unique e such that e |= Oφ.

An entailment problem Oφ |= Kα thus reduces to model checking:
e |= Kα, where e = {w | w |= φ}?

15 / 36

Self-Knowledge

We can nest K operators to say that we know that we know.
Complete and accurate knowledge about own knowledge:
Theorem: positive and negative introspection
Positive introspection: |= Kα→ KKα

Negative introspection: |= ¬Kα→ K¬Kα

Why?
e |= (¬)Kα =⇒ e,w |= (¬)Kα for all w ∈ e ⇐⇒ e,w |= K(¬)Kα.

16 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.

Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.
Ex.: Let KB def

= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).
OKB |= K

(
(p ∨ q) ∧ ¬ ∧ ¬

)?
Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.
Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.

Ex.: Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬ ∧ ¬

)?
Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.
Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.
Ex.: Let KB def

= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).
OKB |= K

(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)?

Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.
Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.
Ex.: Let KB def

= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).
OKB |= K

(
(p ∨ q) ∧ ¬ Kp︸︷︷︸

KB|=p? 7

∧¬ Kq︸︷︷︸
KB|=q? 7

)?

Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.
Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.
Ex.: Let KB def

= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).
OKB |= K

(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)?

Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.
Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.
Ex.: Let KB def

= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).
KB |=

(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)? 3

Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem
Can we solve OKB |= α with ordinary, propositional reasoning?
That is, can we eliminate K and O?
Then we could use standard reasoning system.
Theorem
Let KB, φ be objective. Then OKB |= Kφ ⇐⇒ KB |= φ.

Idea: replace nested Kφ with TRUE if KB |= φ, otherwise with FALSE.
Ex.: Let KB def

= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).
KB |=

(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)? 3

Next slide formalises this idea.
Sneak preview: It’ll become more difficult in the first-order case:
What would you replace KQ(x) with in K∃x (P(x) ∧ ¬KQ(x))? We’ll see later.

17 / 36

Representation Theorem (2)
Definition: representation operators
For objective KB and φ, let RES[KB,φ] def

=

{
TRUE if KB |= φ

FALSE otherwise
where TRUE is some tautology (e.g., p ∨ ¬p) and FALSE is ¬TRUE.

� ‖P‖KB
def
= P

� ‖¬α‖KB
def
= ¬‖α‖KB

� ‖(α ∨ β)‖KB
def
= (‖α‖KB ∨ ‖β‖KB)

� ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

Theorem: representation theorem
OKB |= α ⇐⇒ |= ‖α‖KB.

18 / 36

Representation Theorem (2)
Definition: representation operators
For objective KB and φ, let RES[KB,φ] def

=

{
TRUE if KB |= φ

FALSE otherwise
where TRUE is some tautology (e.g., p ∨ ¬p) and FALSE is ¬TRUE.
� ‖P‖KB

def
= P

� ‖¬α‖KB
def
= ¬‖α‖KB

� ‖(α ∨ β)‖KB
def
= (‖α‖KB ∨ ‖β‖KB)

� ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

Theorem: representation theorem
OKB |= α ⇐⇒ |= ‖α‖KB.

18 / 36

Representation Theorem (2)
Definition: representation operators
For objective KB and φ, let RES[KB,φ] def

=

{
TRUE if KB |= φ

FALSE otherwise
where TRUE is some tautology (e.g., p ∨ ¬p) and FALSE is ¬TRUE.
� ‖P‖KB

def
= P

� ‖¬α‖KB
def
= ¬‖α‖KB

� ‖(α ∨ β)‖KB
def
= (‖α‖KB ∨ ‖β‖KB)

� ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

Theorem: representation theorem
OKB |= α ⇐⇒ |= ‖α‖KB.

18 / 36

Example ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

RES[KB,φ] def
= “KB |= φ?”

Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

) ?

⇐⇒ |= ‖K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB

⇐⇒ |= RES[KB, ‖
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬‖Kp‖KB︸ ︷︷ ︸

KB|=p?
∧¬‖Kq‖KB︸ ︷︷ ︸

KB|=q?

)
]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)]︸ ︷︷ ︸

KB|=(p∨q)∧¬FALSE∧¬FALSE?
⇐⇒ |= TRUE 3

19 / 36

Example ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

RES[KB,φ] def
= “KB |= φ?”

Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
⇐⇒ |= ‖K

(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB

⇐⇒ |= RES[KB, ‖
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬‖Kp‖KB︸ ︷︷ ︸

KB|=p?
∧¬‖Kq‖KB︸ ︷︷ ︸

KB|=q?

)
]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)]︸ ︷︷ ︸

KB|=(p∨q)∧¬FALSE∧¬FALSE?
⇐⇒ |= TRUE 3

19 / 36

Example ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

RES[KB,φ] def
= “KB |= φ?”

Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
⇐⇒ |= ‖K

(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB

⇐⇒ |= RES[KB, ‖
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬‖Kp‖KB︸ ︷︷ ︸

KB|=p?
∧¬‖Kq‖KB︸ ︷︷ ︸

KB|=q?

)
]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)]︸ ︷︷ ︸

KB|=(p∨q)∧¬FALSE∧¬FALSE?
⇐⇒ |= TRUE 3

19 / 36

Example ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

RES[KB,φ] def
= “KB |= φ?”

Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
⇐⇒ |= ‖K

(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB

⇐⇒ |= RES[KB, ‖
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬‖Kp‖KB︸ ︷︷ ︸

KB|=p?
∧¬‖Kq‖KB︸ ︷︷ ︸

KB|=q?

)
]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)]︸ ︷︷ ︸

KB|=(p∨q)∧¬FALSE∧¬FALSE?
⇐⇒ |= TRUE 3

19 / 36

Example ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

RES[KB,φ] def
= “KB |= φ?”

Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
⇐⇒ |= ‖K

(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB

⇐⇒ |= RES[KB, ‖
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬‖Kp‖KB︸ ︷︷ ︸

KB|=p?
∧¬‖Kq‖KB︸ ︷︷ ︸

KB|=q?

)
]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)]︸ ︷︷ ︸

KB|=(p∨q)∧¬FALSE∧¬FALSE?

⇐⇒ |= TRUE 3

19 / 36

Example ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

RES[KB,φ] def
= “KB |= φ?”

Let KB def
= (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r).

OKB |= K
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
⇐⇒ |= ‖K

(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB

⇐⇒ |= RES[KB, ‖
(
(p ∨ q) ∧ ¬Kp ∧ ¬Kq

)
‖KB]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬‖Kp‖KB︸ ︷︷ ︸

KB|=p?
∧¬‖Kq‖KB︸ ︷︷ ︸

KB|=q?

)
]

⇐⇒ |= RES[KB,
(
(p ∨ q) ∧ ¬FALSE ∧ ¬FALSE)]︸ ︷︷ ︸

KB|=(p∨q)∧¬FALSE∧¬FALSE?
⇐⇒ |= TRUE 3

19 / 36

Overview of the Lecture

� A Logic of Knowledge – The Propositional Fragment
� A Logic of Knowledge – The First-Order Case

I Why first-order logic?
I Syntax and semantics
I Knowing that vs knowing what
I Representation theorem

� Extensions of the Logic of Knowledge

20 / 36

Why IsOLPL Not Enough?

K
(
(♠ ∨♥) ∧ ¬K♠ ∧ ¬K♥

)

“all” or “some” =⇒ first-order quantification

21 / 36

Why IsOLPL Not Enough?

K∃x
(
InBox(x) ∧ ¬K InBox(x)

)

“all” or “some” =⇒ first-order quantification

21 / 36

Why IsOLPL Not Enough?

K∃x
(
numberOf(Jane) = x ∧ ¬KnumberOf(Jane) = x

)

“all” or “some” =⇒ first-order quantification

21 / 36

Why IsOLPL Not Enough?

K∃x
(
numberOf(Jane) = x ∧ ¬KnumberOf(Jane) = x

)
“all” or “some” =⇒ first-order quantification

21 / 36

The Language ofOL
Terms:
� x, x′, x1, x2, . . . first-order variables
� #1, #2, #3, . . . standard names
� f(t1, . . . , tj) functions

Formulas:
� P(t1, . . . , tj) atomic formulas
� t1 = t2 equality expressions
� ∃xα “for some x, α”
� ∀xα

def
= ¬∃x¬α

“for all x, α”
� ¬α (α ∨ β) (α ∧ β) (α→ β) (α↔ β) Kα Oα

22 / 36

The Language ofOL
Terms:
� x, x′, x1, x2, . . . first-order variables
� #1, #2, #3, . . . standard names
� f(t1, . . . , tj) functions

Formulas:
� P(t1, . . . , tj) atomic formulas
� t1 = t2 equality expressions
� ∃xα “for some x, α”
� ∀xα def

= ¬∃x¬α “for all x, α”
� ¬α (α ∨ β) (α ∧ β) (α→ β) (α↔ β) Kα Oα

22 / 36

Why Standard Names?
� Consider in classical logic:

fatherOf(Sally) = bestFriend(Jane) ∧
fatherOf(Sally) = bossOf(John)
I Who is father of Sally?
I “Jane’s best friend” is not a good answer
I “John’s boss” is not a good answer
I Classical logic offers no way of identifying him
I Reason: interpretations 〈D,Φ〉 have different domains

� Standard names correspond to an implicit infinite domain
� Standard names allow to identify individuals in formulas:

fatherOf(Sally) = Frank

23 / 36

The Semantics ofOL (1)
Definition: semantics ofOL (1)
f(~n) or P(~n) are primitive iff all ni are standard names.A term or a formula is ground iff it mentions no variable.

A world w is a function that maps
� primitive functions f(~n) to standard names
� primitive atomic formulas P(~n) to {0,1}

The denotation of a ground term w.r.t. w is defined as
� w(n) def

= n for every standard name n
� w(f(t1, . . . , tj))

def
= w[f(w(t1), . . . ,w(tj))]

E.g., if Frank is Mia’s father and Mia is Jane’s mother:
w(fatherOf(motherOf(Jane)))

= w[fatherOf(w[motherOf(Jane)])]
= w[fatherOf(Mia)]
= Frank.

24 / 36

The Semantics ofOL (1)
Definition: semantics ofOL (1)
f(~n) or P(~n) are primitive iff all ni are standard names.A term or a formula is ground iff it mentions no variable.
A world w is a function that maps
� primitive functions f(~n) to standard names
� primitive atomic formulas P(~n) to {0,1}

The denotation of a ground term w.r.t. w is defined as
� w(n) def

= n for every standard name n
� w(f(t1, . . . , tj))

def
= w[f(w(t1), . . . ,w(tj))]

E.g., if Frank is Mia’s father and Mia is Jane’s mother:
w(fatherOf(motherOf(Jane)))

= w[fatherOf(w[motherOf(Jane)])]
= w[fatherOf(Mia)]
= Frank.

24 / 36

The Semantics ofOL (1)
Definition: semantics ofOL (1)
f(~n) or P(~n) are primitive iff all ni are standard names.A term or a formula is ground iff it mentions no variable.
A world w is a function that maps
� primitive functions f(~n) to standard names
� primitive atomic formulas P(~n) to {0,1}

The denotation of a ground term w.r.t. w is defined as
� w(n) def

= n for every standard name n
� w(f(t1, . . . , tj))

def
= w[f(w(t1), . . . ,w(tj))]

E.g., if Frank is Mia’s father and Mia is Jane’s mother:
w(fatherOf(motherOf(Jane)))

= w[fatherOf(w[motherOf(Jane)])]
= w[fatherOf(Mia)]
= Frank.

24 / 36

The Semantics ofOL (1)
Definition: semantics ofOL (1)
f(~n) or P(~n) are primitive iff all ni are standard names.A term or a formula is ground iff it mentions no variable.
A world w is a function that maps
� primitive functions f(~n) to standard names
� primitive atomic formulas P(~n) to {0,1}

The denotation of a ground term w.r.t. w is defined as
� w(n) def

= n for every standard name n
� w(f(t1, . . . , tj))

def
= w[f(w(t1), . . . ,w(tj))]

E.g., if Frank is Mia’s father and Mia is Jane’s mother:
w(fatherOf(motherOf(Jane)))

= w[fatherOf(w[motherOf(Jane)])]
= w[fatherOf(Mia)]
= Frank. 24 / 36

The Semantics ofOL (2)
Definition: semantics ofOL
An epistemic state e is a set of worlds.
� e,w |= P(t1, . . . , tj) ⇐⇒ w[P(w(t1), . . . ,w(tj)] = 1

� e,w |= t1 = t2 ⇐⇒ w(t1) = w(t2)

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

� e,w |= Kα ⇐⇒ for all worlds w′, w′ ∈ e⇒ e,w′ |= α

� e,w |= Oα ⇐⇒ for all worlds w′, w′ ∈ e⇔ e,w′ |= α

25 / 36

The Semantics ofOL (2)
Definition: semantics ofOL
An epistemic state e is a set of worlds.
� e,w |= P(t1, . . . , tj) ⇐⇒ w[P(w(t1), . . . ,w(tj)] = 1

� e,w |= t1 = t2 ⇐⇒ w(t1) = w(t2)

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

� e,w |= Kα ⇐⇒ for all worlds w′, w′ ∈ e⇒ e,w′ |= α

� e,w |= Oα ⇐⇒ for all worlds w′, w′ ∈ e⇔ e,w′ |= α

25 / 36

The Semantics ofOL (2)
Definition: semantics ofOL
An epistemic state e is a set of worlds.
� e,w |= P(t1, . . . , tj) ⇐⇒ w[P(w(t1), . . . ,w(tj)] = 1

� e,w |= t1 = t2 ⇐⇒ w(t1) = w(t2)

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

� e,w |= Kα ⇐⇒ for all worlds w′, w′ ∈ e⇒ e,w′ |= α

� e,w |= Oα ⇐⇒ for all worlds w′, w′ ∈ e⇔ e,w′ |= α

25 / 36

The Semantics ofOL (2)
Definition: semantics ofOL
An epistemic state e is a set of worlds.
� e,w |= P(t1, . . . , tj) ⇐⇒ w[P(w(t1), . . . ,w(tj)] = 1

� e,w |= t1 = t2 ⇐⇒ w(t1) = w(t2)

� e,w |= ¬α ⇐⇒ e,w 6|= α

� e,w |= (α ∨ β) ⇐⇒ e,w |= α or e,w |= β

� e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

� e,w |= Kα ⇐⇒ for all worlds w′, w′ ∈ e⇒ e,w′ |= α

� e,w |= Oα ⇐⇒ for all worlds w′, w′ ∈ e⇔ e,w′ |= α

25 / 36

Knowing That vs Knowing What
� K∃xSecret(x) I know that some x is a secret
� ∃xKSecret(x) I know which x is a secret
� K∃x fatherOf(Sally) = x I know that Sally has a father
� ∃xK fatherOf(Sally) = x I know who Sally’s father is
� K∃xα = de dicto knowledge
� ∃xKα = de re knowledge

Theorem: quantifying-in
|= ∀xKα↔ K∀xα
|= ∃xKα→ K∃xα
6|= K∃xα→ ∃xKα

26 / 36

Some Properties Inherited FromOLPL

Definition: subjective, objective
If φmentions no fun/pred inside K or O, we say φ is objective.
If σmentions fun/pred only inside K or O, we say σ is subjective.

Theorem: logical omniscience
If |= α→ β, then |= Kα→ Kβ.
If |= α, then |= Kα.

Theorem: unique-model property
Let φ be objective. Then there is a unique e such that e |= Oφ.

Theorem: positive and negative introspection
Positive introspection: |= Kα→ KKα

Negative introspection: |= ¬Kα→ K¬Kα
27 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB
⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB

⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB
⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB
⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))

⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB
⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)

⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB
⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)

⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Example e,w |= ∃xα ⇐⇒ e,w |= αx
n for some standard name n

e,w |= Kα ⇐⇒ for all worlds w′, w ∈ e⇒ e,w′ |= α

e,w |= Oα ⇐⇒ for all worlds w′, w ∈ e⇔ e,w′ |= α

Let KB def
= ∃x (x 6= #1 ∧ P(x))

� e |= OKB
⇐⇒ w ∈ e⇔ w |= ∃x (x 6= #1 ∧ P(x))
⇐⇒ w ∈ e⇔ w[P(n)] = 1 for some n ∈ {#2, #3, . . .}

� e |= K∃x (P(x) ∧ ¬KP(x))
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) ∧ ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) and e,w |= ¬KP(n)
⇐⇒ for all w, w ∈ e⇒ for some n, e,w |= P(n) andfor some w′, w′ ∈ e and e,w′ 6|= P(n)
⇐⇒ for all w, w ∈ e⇒ for some n, w[P(n)] = 1 andfor some w′, w′ ∈ e and w′[P(n)] 6= 1

28 / 36

Comparison with Tarski Semantics
� Traditional FOL semantics

I Interpretation 〈D,Φ〉 plus variable mapping µ
I 〈D,Φ〉,µ |= P(t1, . . . , tj) ⇐⇒ 〈d1, . . . , dj〉 ∈ Φ(P)where di = 〈D,Φ〉,µ‖ti‖
I 〈D,Φ〉,µ |= ∃xα ⇐⇒ 〈D,Φ〉,µx

d |= α for some d ∈ D
I Purpose: reason about mathematics
I Disadvantage: cumbersome to work with

� Our semantics
I World maps primitive functions to names, predicates to {0,1}
I w |= P(t1, . . . , tj) ⇐⇒ w[P(n1, . . . ,nj)] = 1 where ni = w(ti)
I w |= ∃xα ⇐⇒ w |= αx

n for some standard name n
I Purpose: reason about knowledge
I Disadvantage: domain is always countably infinite

I ∀x (x = t1 ∨ . . . ∨ x = tj) asserts finite domain in classical FOL
I ∀x (x = t1 ∨ . . . ∨ x = tj) is unsatisfiable inOL
I but can be simulated with predicate: ∀x (P(x) ↔ (x = t1 ∨ . . . ∨ x = tj))
I classical FOL cannot distinguish countably infinite from
uncountably infinite domains anyway

29 / 36

Representation Theorem (1)
OKB |= ∃xKP(x)?

How can we represent the known instances of an objective formula?
� KB def

= (P(#1) ∧ P(#2)) #1, #2 are known P-instances
� KB def

= (P(#1) ∨ P(#2)) no known P-instances
� KB def

= ∀xP(x) all names are known P-instances
� KB def

= ∀x (x 6= #1→ P(x)) #2, #3, . . . are known P-instances
� KB def

= (Q(#1) ∧ ∀x (Q(x)→ P(x)) #1 is known P-instance

Let n1, . . . ,nj be names in KB and let n′ be a new one.
RES[KB, P(x)] def

= (x = n1 ∧ “KB |= P(n1)”) ∨
. . .

(x = nj ∧ “KB |= P(nj)”) ∨
(x 6= n1 ∧ . . . ∧ x 6= nj ∧ “KB |= P(n′)”)

30 / 36

Representation Theorem (1)
OKB |= ∃xKP(x)?

How can we represent the known instances of an objective formula?
� KB def

= (P(#1) ∧ P(#2)) #1, #2 are known P-instances
� KB def

= (P(#1) ∨ P(#2)) no known P-instances
� KB def

= ∀xP(x) all names are known P-instances
� KB def

= ∀x (x 6= #1→ P(x)) #2, #3, . . . are known P-instances
� KB def

= (Q(#1) ∧ ∀x (Q(x)→ P(x)) #1 is known P-instance
Let n1, . . . ,nj be names in KB and let n′ be a new one.

RES[KB, P(x)] def
= (x = n1 ∧ “KB |= P(n1)”) ∨

. . .

(x = nj ∧ “KB |= P(nj)”) ∨
(x 6= n1 ∧ . . . ∧ x 6= nj ∧ “KB |= P(n′)”)

30 / 36

Representation Theorem (1)
OKB |= ∃xKP(x)?

How can we represent the known instances of an objective formula?
� KB def

= (P(#1) ∧ P(#2)) x = #1 ∨ x = #2
� KB def

= (P(#1) ∨ P(#2)) FALSE
� KB def

= ∀xP(x) TRUE
� KB def

= ∀x (x 6= #1→ P(x)) x 6= #1
� KB def

= (Q(#1) ∧ ∀x (Q(x)→ P(x)) x = #1

Let n1, . . . ,nj be names in KB and let n′ be a new one.
RES[KB, P(x)] def

= (x = n1 ∧ “KB |= P(n1)”) ∨
. . .

(x = nj ∧ “KB |= P(nj)”) ∨
(x 6= n1 ∧ . . . ∧ x 6= nj ∧ “KB |= P(n′)”)

30 / 36

Representation Theorem (1)
OKB |= ∃xKP(x)?

How can we represent the known instances of an objective formula?
� KB def

= (P(#1) ∧ P(#2)) x = #1 ∨ x = #2
� KB def

= (P(#1) ∨ P(#2)) FALSE
� KB def

= ∀xP(x) TRUE
� KB def

= ∀x (x 6= #1→ P(x)) x 6= #1
� KB def

= (Q(#1) ∧ ∀x (Q(x)→ P(x)) x = #1

Let n1, . . . ,nj be names in KB and let n′ be a new one.
RES[KB, P(x)] def

= (x = n1 ∧ “KB |= P(n1)”) ∨
. . .

(x = nj ∧ “KB |= P(nj)”) ∨
(x 6= n1 ∧ . . . ∧ x 6= nj ∧ “KB |= P(n′)”)

30 / 36

Representation Theorem (2)
Definition: representation of known instances
If φ has a free variable x and n1, . . . ,nj are the names mentionedin KB,φ, and n′ is a new name:

RES[KB,φ] def
= (x = n1 ∧ RES[KB,φx

n1
]) ∨

. . .

(x = nj ∧ RES[KB,φx
nj
]) ∨

(x 6= n1 ∧ . . . ∧ x 6= nj ∧ RES[KB,φx
n′]n

′
x)

If φ has no free variables:
RES[KB,φ] def

=

{
TRUE if KB |= φ

FALSE otherwise

31 / 36

Representation Theorem (3)
‖ · ‖ operator gets a rule for ∃xα:

Definition: representation operators
� ‖φ‖KB

def
= φ for objective φ

� ‖¬α‖KB
def
= ¬‖α‖KB

� ‖(α ∨ β)‖KB
def
= (‖α‖KB ∨ ‖β‖KB)

� ‖∃xα‖KB
def
= ∃x‖α‖KB

� ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

Theorem: representation theorem
OKB |= α ⇐⇒ |= ‖α‖KB.

32 / 36

Representation Theorem (3)
‖ · ‖ operator gets a rule for ∃xα:

Definition: representation operators
� ‖φ‖KB

def
= φ for objective φ

� ‖¬α‖KB
def
= ¬‖α‖KB

� ‖(α ∨ β)‖KB
def
= (‖α‖KB ∨ ‖β‖KB)

� ‖∃xα‖KB
def
= ∃x‖α‖KB

� ‖Kα‖KB
def
= RES[KB, ‖α‖KB]

Theorem: representation theorem
OKB |= α ⇐⇒ |= ‖α‖KB.

32 / 36

Overview of the Lecture

� A Logic of Knowledge – The Propositional Fragment
� A Logic of Knowledge – The First-Order Case
� Extensions of the Logic of Knowledge

I Multiple agents
I Probabilities
I Conditional belief
I Limited Belief (week 8)
I Actions (week 9)

33 / 36

Multi-Agent Belief

Mike does not know what is in the gift box, but he knows that Jane
knows what is in there:

KMike∃x
(
InBox(x) ∧ ¬KMikeInBox(x) ∧ K JaneInBox(x)

)
Epistemic states get more complex: in every possible world, Mike
considers a whole set of worlds to be possible from Jane’s
perspective.

34 / 36

Probabilities

I believe that with probability .999, there is no bomb in the gift box:

B(¬∃x (InBox(x) ∧ Bomb(x)) : 0.999)

An epistemic state is now probability distribution over possible
worlds.

35 / 36

Conditional Belief
I believe that if something is in the gift box, it’s probably not a bomb:

B(∃x InBox(x)⇒ ¬Bomb(x))

Epistemic state ranks possible worlds by plausibility and checks if
the most-plausible worlds where ∃x InBox(x) is true also satisfy
Bomb(x).
� A knowledge base is now a collection of conditionals

“if _____, then most likely _____”
� What sort of ranking should these conditionals induce?

36 / 36

