9a. Exponential Time Hypothesis

Serge Gaspers

1973
Contents
0—_SAT and k-SAT] 1
2 Subexponential time algorithms| 1
B_ETH and SETH] 2
4 Algorithmic lower bounds based on ETH] 2
[5 Algorithmic lower bounds based on SETH]| 3
[6 Further Reading| 4
1 SAT and k-SAT
SAT
SAT
Input: A propositional formula F' in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F'?
k-SAT
Input: A CNF formula F' where each clause has length at most k
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F'?
Example:

(1 Va) A (mzg VasV-xy) A(xy Vag) A(mxy V-oxg Voxg)

Algorithms for SAT
e Brute-force: O*(2")

.. after > 50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions,

fastest known algorithm for SAT: O* (2 (1=1/0(ogm/n))) \where m is the number of clauses [CIP06] [DHO9)

e However: no O*(1.9999™) time algorithm is known

fastest known algorithms for 3-SAT: O*(1.3280™) deterministic [Liul8] and O*(1.3070™) randomized [Han+19)

Could it be that 3-SAT cannot be solved in 2°(") time?

Could it be that SAT cannot be solved in O*((2 — €)™) time for any € > 07

2 Subexponential time algorithms
NP-hard problems in subexponential time?

e Are there any NP-hard problems that can be solved in 290" time?

e Yes. For example, INDEPENDENT SET is NP-comlpete even when the input graph is planar (can be drawn
in the plane without edge crossings). Planar graphs have treewidth O(y/n) and tree decompositions of that
width can be found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]). Using a tree
decomposition based algorithm, INDEPENDENT SET can be solved in 2°(vV™ time on planar graphs.

3 ETH and SETH

Definition 1. For each k& > 3, define §; to be the inﬁnimunﬂ of the set of constants ¢ such that k-SAT can be
solved in O*(2°™) time.

Conjecture 2 (Exponential Time Hyphothesis (ETH)). d3 > 0.
Conjecture 3 (Strong Exponential Time Hyphothesis (SETH)). limg_yo0 0 = 1.

Notes: (1) ETH = 3-SAT cannot be solved in 2°(") time. SETH = SAT cannot be solved in O*((2 — ¢)") time
for any € > 0.

4 Algorithmic lower bounds based on ETH

e Suppose ETH is true
e Can we infer lower bounds on the running time needed to solve other problems?

e Suppose there is a polynomial-time reduction from 3-SAT to a graph problem II, which constructs an equivalent
instance where the number of vertices of the output graph equals the number of variables of the input formula,
V] = |var(F)|.

e Using the reduction, we can conclude that, if IT has an O*(2°(VD) time algorithm, then 3-SAT has an
O*(20var(F)D) time algorithm, contradicting ETH.

e Therefore, we conclude that IT has no O*(2°(VD) time algorithm unless ETH fails.

Sparsification Lemma
Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the
number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [IPZ01]). For each ¢ > 0 and positive integer k, there is a O*(25™) time
algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula F' = \/;?:1 F;
that is a disjunction of t < 2°™ formulas F; with var(F;) = var(F) and |cla(F;)| = O(n).

3-SAT with a linear number of clauses

Corollary 5. ETH = 3-SAT cannot be solved in O*(2°("+™)) time where m denotes the number of clauses of F.

Observation: Let A, B be parameterized problems and f, g be non-decreasing functions. Suppose there is a
polynomial-parameter transformation from A to B such that if the parameter of an instance of A is k, then the
parameter of the constructed instance of B is at most g(k). Then an O*(2°¢/(%)) time algorithm for B implies an
O*(2°U/(9(k))) time algorithm for A.

IThe infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of
{e€R:e>0}is 0.

More general reductions are possible

Definition 6 (SERF-reduction). A SubEzponential Reduction Family from a parameterized problem A to a pa-
rameterized problem B is a family of Turing reductions from A to B (i.e., an algorithm for A, making queries to
an oracle for B that solves any instance for B in constant time) for each & > 0 such that

e for every instance I for A with parameter k, the running time is O*(2°%), and

e for every query I’ to B with parameter k', we have that &’ € O(k) and |I'| = |I|°W).
Note: If A is SERF-reducible to B and A has no 2°*) time algorithm, then B has no 2°*") time algorithm.
Vertex Cover has no subexponential algorithm
Polynomial-parameter transformation from 3-SAT.

For simplicity, assume all clauses have length 3.
3-CNF Formula FF = (uVoV-y)A(~uVyVz)A(-oVwVaz)AxVyV-z)

For a 3-CNF formula with n variables and m clauses, we create a VERTEX COVER instance with |V| = 2n + 3m,
|E| =n+ 6m, and k = n + 2m.

Theorem 7. ETH = VERTEX COVER has no 2°1VD) time algorithm.
Theorem 8. ETH = VERTEX COVER has no 2°UED time algorithm.

Theorem 9. ETH = VERTEX COVER has no 2°®) time algorithm.

5 Algorithmic lower bounds based on SETH

Hitting Set
Recall: A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of
each set in H, i.e., XNY # () foreach Y € H.

elts-HITTING SET
Input: A set system S = (V, H) and an integer k
Parameter: n = |V|
Question: Does S have a hitting set of size at most k7

SETH-lower bound for Hitting Set
CNF Formula F = (uVoV-y)A(-uVyVz)A(-oVwVa)A(xzVyV-z)
Inidence graph of equivalent Hitting Set instance:

sets

elts

sets

For a CNF formula with n variables and m clauses, we create a HITTING SET instance with |V| = 2n and k = n.

Theorem 10. SETH = HITTING SET has no O*((2 — ¢)IVI/2) time algorithm for any e > 0.

Note: With a more ingenious reduction, one can show that HITTING SET has no O*((2 —¢)!Vl) time algorithm for
any € > 0 under SETH [Cyg+16].

6 Further Reading

e Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in |Cyg+15]

e Section 11.3, Subezponential Algorithms and ETH in [FK10)

e Section 29.5, The Sparsification Lemma in [DF13]

References

[CIPO6]

[Cyg+15]
[Cyg+16]
[DF13]
[DHO09]
[FK10]
[Han+19]
[IPZ01]

[Liulg]

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “A Duality between Clause Width and
Clause Density for SAT”. In: Proceedings of the 21st Annual IEEE Conference on Computational Com-
plezxity (CCC 2006). IEEE Computer Society, 2006, pp. 252—260.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk,
Michat Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Marek Cygan, Holger Dell, Daniel Lokshtanov, Daniel Marx, Jesper Nederlof, Yoshio Okamoto, Ra-

mamohan Paturi, Saket Saurabh, and Magnus Wahlstrom. “On Problems as Hard as CNF-SAT”. In:
ACM Transactions on Algorithms 12.3 (2016), 41:1-41:24.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complezity. Springer, 2013.

Evgeny Dantsin and Edward A. Hirsch. “Worst-Case Upper Bounds”. In: Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press, 2009, pp. 403—424.

Fedor V. Fomin and Dieter Kratsch. Ezact Exponential Algorithms. Springer, 2010.

Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. “Faster k-SAT algorithms using
biased-PPSZ”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2019). ACM, 2019, pp. 578-589.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Problems Have Strongly Exponen-
tial Complexity?” In: Journal of Computer and System Sciences 63.4 (2001), pp. 512-530.

Sixue Liu. “Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT”. In:
Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018). Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 88:1-88:13.

	SAT and k-SAT
	Subexponential time algorithms
	ETH and SETH
	Algorithmic lower bounds based on ETH
	Algorithmic lower bounds based on SETH
	Further Reading

