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1 SAT and k-SAT
SAT
SAT
Input: A propositional formula F' in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F'?
k-SAT
Input: A CNF formula F' where each clause has length at most k
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F'?
Example:

(1 Va) A (mzg VasV-xy) A(xy Vag) A(mxy V-oxg Voxg)

Algorithms for SAT
e Brute-force: O*(2")

.. after > 50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions,

fastest known algorithm for SAT: O* (2 (1=1/0(ogm/n))) \where m is the number of clauses [CIP06] [DHO9)

e However: no O*(1.9999™) time algorithm is known

fastest known algorithms for 3-SAT: O*(1.3280™) deterministic [Liul8] and O*(1.3070™) randomized [Han+19)

Could it be that 3-SAT cannot be solved in 2°(") time?

Could it be that SAT cannot be solved in O*((2 — €)™) time for any € > 07



2 Subexponential time algorithms
NP-hard problems in subexponential time?

e Are there any NP-hard problems that can be solved in 290" time?

e Yes. For example, INDEPENDENT SET is NP-comlpete even when the input graph is planar (can be drawn
in the plane without edge crossings). Planar graphs have treewidth O(y/n) and tree decompositions of that
width can be found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]). Using a tree
decomposition based algorithm, INDEPENDENT SET can be solved in 2°(vV™ time on planar graphs.

3 ETH and SETH

Definition 1. For each k& > 3, define §; to be the inﬁnimunﬂ of the set of constants ¢ such that k-SAT can be
solved in O*(2°™) time.

Conjecture 2 (Exponential Time Hyphothesis (ETH)). d3 > 0.
Conjecture 3 (Strong Exponential Time Hyphothesis (SETH)). limg_yo0 0 = 1.

Notes: (1) ETH = 3-SAT cannot be solved in 2°(") time. SETH = SAT cannot be solved in O*((2 — ¢)") time
for any € > 0.

4 Algorithmic lower bounds based on ETH

e Suppose ETH is true
e Can we infer lower bounds on the running time needed to solve other problems?

e Suppose there is a polynomial-time reduction from 3-SAT to a graph problem II, which constructs an equivalent
instance where the number of vertices of the output graph equals the number of variables of the input formula,
V] = |var(F)|.

e Using the reduction, we can conclude that, if IT has an O*(2°(VD) time algorithm, then 3-SAT has an
O*(20var(F)D) time algorithm, contradicting ETH.

e Therefore, we conclude that IT has no O*(2°(VD) time algorithm unless ETH fails.

Sparsification Lemma
Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the
number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [IPZ01]). For each ¢ > 0 and positive integer k, there is a O*(25™) time
algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula F' = \/;?:1 F;
that is a disjunction of t < 2°™ formulas F; with var(F;) = var(F) and |cla(F;)| = O(n).

3-SAT with a linear number of clauses

Corollary 5. ETH = 3-SAT cannot be solved in O*(2°("+™)) time where m denotes the number of clauses of F.

Observation: Let A, B be parameterized problems and f, g be non-decreasing functions. Suppose there is a
polynomial-parameter transformation from A to B such that if the parameter of an instance of A is k, then the
parameter of the constructed instance of B is at most g(k). Then an O*(2°¢/(%)) time algorithm for B implies an
O*(2°U/(9(k))) time algorithm for A.

IThe infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of
{e€R:e>0}is 0.



More general reductions are possible

Definition 6 (SERF-reduction). A SubEzponential Reduction Family from a parameterized problem A to a pa-
rameterized problem B is a family of Turing reductions from A to B (i.e., an algorithm for A, making queries to
an oracle for B that solves any instance for B in constant time) for each & > 0 such that

e for every instance I for A with parameter k, the running time is O*(2°%), and

e for every query I’ to B with parameter k', we have that &’ € O(k) and |I'| = |I|°W).
Note: If A is SERF-reducible to B and A has no 2°*) time algorithm, then B has no 2°*") time algorithm.
Vertex Cover has no subexponential algorithm
Polynomial-parameter transformation from 3-SAT.

For simplicity, assume all clauses have length 3.
3-CNF Formula FF = (uVoV-y)A(~uVyVz)A(-oVwVaz)AxVyV-z)

For a 3-CNF formula with n variables and m clauses, we create a VERTEX COVER instance with |V| = 2n + 3m,
|E| =n+ 6m, and k = n + 2m.

Theorem 7. ETH = VERTEX COVER has no 2°1VD) time algorithm.
Theorem 8. ETH = VERTEX COVER has no 2°UED time algorithm.

Theorem 9. ETH = VERTEX COVER has no 2°®) time algorithm.

5 Algorithmic lower bounds based on SETH

Hitting Set
Recall: A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of
each set in H, i.e., XNY # () foreach Y € H.

elts-HITTING SET
Input: A set system S = (V, H) and an integer k
Parameter: n = |V|
Question: Does S have a hitting set of size at most k7




SETH-lower bound for Hitting Set
CNF Formula F = (uVoV-y)A(-uVyVz)A(-oVwVa)A(xzVyV-z)
Inidence graph of equivalent Hitting Set instance:

sets

elts

sets

For a CNF formula with n variables and m clauses, we create a HITTING SET instance with |V| = 2n and k = n.

Theorem 10. SETH = HITTING SET has no O*((2 — ¢)IVI/2) time algorithm for any e > 0.

Note: With a more ingenious reduction, one can show that HITTING SET has no O*((2 —¢)!Vl) time algorithm for
any € > 0 under SETH [Cyg+16].

6 Further Reading

e Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in |Cyg+15]

e Section 11.3, Subezponential Algorithms and ETH in [FK10)

e Section 29.5, The Sparsification Lemma in [DF13]
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