
9a. Exponential Time Hypothesis

Serge Gaspers

19T3

Contents

1 SAT and k-SAT 1

2 Subexponential time algorithms 1

3 ETH and SETH 2

4 Algorithmic lower bounds based on ETH 2

5 Algorithmic lower bounds based on SETH 3

6 Further Reading 4

1 SAT and k-SAT

SAT

SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

k-SAT
Input: A CNF formula F where each clause has length at most k
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

Algorithms for SAT

• Brute-force: O∗(2n)

• ... after > 50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

• fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the number of clauses [CIP06] [DH09]

• However: no O∗(1.9999n) time algorithm is known

• fastest known algorithms for 3-SAT: O∗(1.3280n) deterministic [Liu18] and O∗(1.3070n) randomized [Han+19]

• Could it be that 3-SAT cannot be solved in 2o(n) time?

• Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

1

2 Subexponential time algorithms

NP-hard problems in subexponential time?

• Are there any NP-hard problems that can be solved in 2o(n) time?

• Yes. For example, Independent Set is NP-comlpete even when the input graph is planar (can be drawn
in the plane without edge crossings). Planar graphs have treewidth O(

√
n) and tree decompositions of that

width can be found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]). Using a tree
decomposition based algorithm, Independent Set can be solved in 2O(

√
n) time on planar graphs.

3 ETH and SETH

Definition 1. For each k ≥ 3, define δk to be the infinimum1 of the set of constants c such that k-SAT can be
solved in O∗(2c·n) time.

Conjecture 2 (Exponential Time Hyphothesis (ETH)). δ3 > 0.

Conjecture 3 (Strong Exponential Time Hyphothesis (SETH)). limk→∞ δk = 1.

Notes: (1) ETH ⇒ 3-SAT cannot be solved in 2o(n) time. SETH ⇒ SAT cannot be solved in O∗((2 − ε)n) time
for any ε > 0.

4 Algorithmic lower bounds based on ETH

• Suppose ETH is true

• Can we infer lower bounds on the running time needed to solve other problems?

• Suppose there is a polynomial-time reduction from 3-SAT to a graph problem Π, which constructs an equivalent
instance where the number of vertices of the output graph equals the number of variables of the input formula,
|V | = |var(F)|.

• Using the reduction, we can conclude that, if Π has an O∗(2o(|V |)) time algorithm, then 3-SAT has an
O∗(2o(|var(F)|)) time algorithm, contradicting ETH.

• Therefore, we conclude that Π has no O∗(2o(|V |)) time algorithm unless ETH fails.

Sparsification Lemma
Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the
number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [IPZ01]). For each ε > 0 and positive integer k, there is a O∗(2ε·n) time
algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula F ′ =

∨t
i=1 Fi

that is a disjunction of t ≤ 2εn formulas Fi with var(Fi) = var(F) and |cla(Fi)| = O(n).

3-SAT with a linear number of clauses

Corollary 5. ETH ⇒ 3-SAT cannot be solved in O∗(2o(n+m)) time where m denotes the number of clauses of F .

Observation: Let A, B be parameterized problems and f , g be non-decreasing functions. Suppose there is a
polynomial-parameter transformation from A to B such that if the parameter of an instance of A is k, then the
parameter of the constructed instance of B is at most g(k). Then an O∗(2o(f(k))) time algorithm for B implies an
O∗(2o(f(g(k)))) time algorithm for A.

1The infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of
{ε ∈ R : ε > 0} is 0.

2

More general reductions are possible

Definition 6 (SERF-reduction). A SubExponential Reduction Family from a parameterized problem A to a pa-
rameterized problem B is a family of Turing reductions from A to B (i.e., an algorithm for A, making queries to
an oracle for B that solves any instance for B in constant time) for each ε > 0 such that

• for every instance I for A with parameter k, the running time is O∗(2εk), and

• for every query I ′ to B with parameter k′, we have that k′ ∈ O(k) and |I ′| = |I|O(1).

Note: If A is SERF-reducible to B and A has no 2o(k) time algorithm, then B has no 2o(k
′) time algorithm.

Vertex Cover has no subexponential algorithm
Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex Cover instance with |V | = 2n + 3m,
|E| = n+ 6m, and k = n+ 2m.

Theorem 7. ETH ⇒ Vertex Cover has no 2o(|V |) time algorithm.

Theorem 8. ETH ⇒ Vertex Cover has no 2o(|E|) time algorithm.

Theorem 9. ETH ⇒ Vertex Cover has no 2o(k) time algorithm.

5 Algorithmic lower bounds based on SETH

Hitting Set
Recall: A hitting set of a set system S = (V,H) is a subset X of V such that X contains at least one element of
each set in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

elts-Hitting Set
Input: A set system S = (V,H) and an integer k
Parameter: n = |V |
Question: Does S have a hitting set of size at most k?

3

SETH-lower bound for Hitting Set
CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)
Inidence graph of equivalent Hitting Set instance:

¬u u

¬v v
¬w w

¬x x
¬y y

¬z z

sets

elts

sets

For a CNF formula with n variables and m clauses, we create a Hitting Set instance with |V | = 2n and k = n.

Theorem 10. SETH ⇒ Hitting Set has no O∗((2− ε)|V |/2) time algorithm for any ε > 0.

Note: With a more ingenious reduction, one can show that Hitting Set has no O∗((2− ε)|V |) time algorithm for
any ε > 0 under SETH [Cyg+16].

6 Further Reading

• Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in [Cyg+15]

• Section 11.3, Subexponential Algorithms and ETH in [FK10]

• Section 29.5, The Sparsification Lemma in [DF13]

References

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “A Duality between Clause Width and
Clause Density for SAT”. In: Proceedings of the 21st Annual IEEE Conference on Computational Com-
plexity (CCC 2006). IEEE Computer Society, 2006, pp. 252–260.

[Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[Cyg+16] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ra-
mamohan Paturi, Saket Saurabh, and Magnus Wahlström. “On Problems as Hard as CNF-SAT”. In:
ACM Transactions on Algorithms 12.3 (2016), 41:1–41:24.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.

[DH09] Evgeny Dantsin and Edward A. Hirsch. “Worst-Case Upper Bounds”. In: Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press, 2009, pp. 403–424.

[FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

[Han+19] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. “Faster k -SAT algorithms using
biased-PPSZ”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2019). ACM, 2019, pp. 578–589.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Problems Have Strongly Exponen-
tial Complexity?” In: Journal of Computer and System Sciences 63.4 (2001), pp. 512–530.

[Liu18] Sixue Liu. “Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT”. In:
Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018). Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 88:1–88:13.

4

	SAT and k-SAT
	Subexponential time algorithms
	ETH and SETH
	Algorithmic lower bounds based on ETH
	Algorithmic lower bounds based on SETH
	Further Reading

