Aims
This exercise aims to get you to:

e Compile, run, and debug MapReduce tasks via Command Line
« Compile, run, and debug MapReduce tasks via Eclipse

One Tip on Hadoop File System Shell

Following are the three commands which appear same but have minute
differences:

1. hadoop fs {args}
2. hadoop dfs {args}

3. hdfs dfs {args}

The first command: fs relates to a generic file system which can point to any
file systems like local, HDFS etc. So this can be used when you are dealing
with different file systems such as Local FS, HFTP FS, S3 FS, and others.

The second command: dfs is very specific to HDFS. It would work for
operation relates to HDFS. This has been deprecated and we should use hdfs
dfs instead.

The third command: It is the same as 2". It would work for all the
operations related to HDFS and is the recommended command instead of
hadoop dfs.

Therefore, when dealing with HDFS in our labs, it is always recommended
{0 USe ndfs dfs {args}.

Compile and Run “WordCount” via Command Line

This exercise aims to make you know how to compile your MapReduce java
program and how to run it in Hadoop.

1. Download the sample code “WordCount.java™:

$ wget http://www.cse.unsw.edu.au/~z3515164/WordCount. java

2. Add the following environment variables to the end of file ~/.bashrc:

|export HADOOP CLASSPATH=${JAVA HOME}/lib/tools.jar

Save the file, and then run the following command to take these
configurations into effect:

$ source ~/.bashrc

3. Compile WordCount.java and create a jar:

$ $HADOOP_HOME/bin/hadoop com.sun.tools.javac.Main WordCount. java
$ jar cf wec.jar WordCount*.class
4. Generate two files, filel and file2 in folder TestFiles at your home folder:

mkdir ~/TestFiles
echo Hello World Bye World > ~/TestFiles/filel
echo Hello Hadoop Goodbye Hadoop > ~/TestFiles/file2

v v n

5. Start HDFS and YARN, and put the two files to HDFS:

$ $HADOOP_HOME/sbin/start-all.sh
$ $HADOOP_HOME/bin/hdfs dfs -mkdir input
$ $HADOOP_HOME/bin/hdfs dfs —-put ~/TestFiles/* input

6. Run the application:

$ $HADOOP_HOME/bin/hadoop jar wc.jar WordCount input output

7. Check out the output:

$ $HADOOP_ HOME/bin/hdfs dfs —cat output/*

Create a WordCount Project in Eclipse

Eclipse Juno (4.2) has already been downloaded in the virtual machine for
you to use. There is a plugin for Eclipse that makes it simple to create a new
Hadoop project and execute Hadoop jobs, hadoop-eclipse-plugin-2.7.2.jar,
which is also downloaded. In this exercise, you will learn how to use Eclipse
to create a MapReduce project, configure the project, and run the program.
You can also manage the files in HDFS by using Eclipse, instead of using
commands to transfer files between local file systems and HDFS.

1. Configure the eclipse Hadoop plugin:
a) Open Eclipse, and make the workspace folder at

“/home/comp9313/workspace” by default. In “Project Explorer” you will
see “DFS Locations”:

-

File

D

Edit Source Refactor

R R N e N

[Project Explorer £2

P =] DFS Locations

Refactor

MNavigate

HE 0

b) In Eclipse Menu, select Window->Preferences, then a dialog will pop up

like below:

> Preferences + X i
type filter text a Hadoop Map/Reduce & 5 - o
4 General
» Ant Hadoop installation directory: lhomelcomp93l3lhadocp|| Brows
» Code Recommenders
» Help
» Install/Update
b Java
¥ Maven
b Mylyn
» Oomph
» Run/Debug
b Team
Validation
» WindowBuilder
| Restore Defaults || Appl
XML .
® | Cancel |

Configure your Hadoop installation directory as shown in the figure.

c) Change to the Map/Reduce Perspective:

Select Window->Open Perspective->Other->Map/Reduce

.
hd Open Perspective + X

45 Debug

@ Git

a’ Java (default)

5 Java Browsing

s Java Type Hierarchy
T —
(D Planning

[Resource

£ Team Synchronizing
X XML

| Cancel

d) Connect Eclipse with HDFS

]

Right click in tab Map/Reduce Locations, and select “New Hadoop location”

{2 Problems ¥ Tasks @ Javadoc % Map/Reduce Locations 52 | & Console

Location

Master node State

’ MapReduce Location localhost

i New Hadoop location...
Sa Edit Hadoop location...
K Delete

In the pop-up dialog, give a name for the Map/Reduce location, and change
the port of DFS Master to “9000”

New Hadoop location...

+ X]
Define Hadoop location
Define the location of a Hadoop infrastructure for running MapReduce
applications.
General ‘ Advanced parameters
Location name: [MapReduce location|]
Map/Reduce(V2) Master- DFS Mast
Host: |Iucalhus(|wf Use M/R Master host
Host: |Io:a|hosr |
Port: [50020 Il| pore: 2000 |
User name: ‘comp9313 ‘
SOCKS proxy-
"] Enable SOCKS proxy
Host: |host |
Port: | 1080 |
| Load from file | ‘ Vvalidate location |
© | e

4

e) Test the connection. If you have successfully connected Eclipse and
Hadoop, you can see the folders and files in HDFS under “DFS Locations”.

[?5 Project Explorer 2 = O

HE e ~
~ =| DFS Locations
~ & MapReduce Location
v ()
b = tmp (1)
w = user (1)
b = input (2)

b = output (2)

You can click the files to view them, and you can also download files to
local file system or upload files to HDFS.

2. Create your WordCount Project in Eclipse

a) Select File->New->Project to create a Map/Reduce project. Name the
project as “WordCount”.

v MNew MapReduce Project Wizard + X
MapReduce Project
Create a MapReduce project.

Project name: [WordCount|]

[wf Use default location

Location ‘/homefcomp%13fworkspaceNu’DrdCDum H Browse... |

Hadoop MapReduce Library Installation Path

(®) Use default Hadoop Configure Ha
() specify Hadoop library location H Browse...

@ | <Back I Next > | | Cancel |

4

Now you can see the created project in “Project Explorer”,

[75 Project Explorer &2 = 0

» =] DFS Locations

~ =) WordCount
» @ JRE System Library [java-7-openjdk-amd64]
P (s jackson-core-asl-1.9.13.jar - /home/comp931:
» @8 commons-cli-1.2.jar - /home/comp9313/hadc
P (@ jetty-util-6.1.26.jar - fhome/comp9313/hadoc
» @ guice-serviet-3.0.jar - /home/scomp9313/hado
¥ 3 guava-11.0.2.jar - fhome/comp9313/hadoop:
P s jackson-xc-1.9.13.jar - /home/comp9313/had
P (@ javax.inject-1.jar - /home/comp9313/hadoop

» @ commons-collections-3.2.2.jar - fhome/comp

= o . o - o -

b) Create a new class “WordCount”, in package “comp9313.lab2”

v New Java Class + X
Java Class

Create a new Java class. @
Source folder: |WordCounUsrc || Browse... |
Package: 0[ccnmpg?ﬂ 3.'ab2 l | Browse... |
[_] Enclosing type: | || Browse... |
Name: |W0rdCount |

Modifiers: (® public () package private protected

c) Replace the code of class WordCount by the content of “WordCount.java”
in the first exercise.

[J] wordCount.java 52

package comp9313.1lab2;

folder of project “WordCount”

1

2

cllpublic class WordCount {
4

5 K

4]

d) Copy the file “log4j.properties” from $SHADOOP_CONF_DIR to the src

$ cp $HADOOP_CONF_DIR/ log4j.properties ~/workspace/WordCount/src

Then right click the project in Eclipse and click “Refresh”.

This step is to configure the log4j system for Hadoop. Without doing this,
you cannot see the Hadoop running message in Eclipse console.

Running MapReduce Jobs in Eclipse

Right click the new created file WordCount.java, and select Run as->Run

Configurations->Java Application. In the dialog, click the tab “Main”, and

make input “comp9313.lab2.WordCount” as the “Main class”.

Name: ‘WordCount

© Main ™ = Argumems] mJRE] L Classpalh] 73 Source] m Environmenﬂ = gommonﬁ

rProject:

[WordCount| ” Browse... |

rMain class:

|comp93|3.|ab2.WordCount || Search... |

[] Include system libraries when searching for a main class

[] Include inherited mains when searching for a main class

[] Stop in main

Then configure the arguments for this project: make the arguments as

“hdfs://localhost:9000/user/comp9313/input

hdfs://localhost:9000/user/comp9313/output”. Finally, click “Run”.

Name: |WordCoum

© Main [#9= Arguments mJRE] by Classpath] By Source] 2] Environmenﬂ 1S gommon]

Program arguments:

hdfs:ﬁlocalhosI:QOOOIuserlcompIQN3ﬂnput hdfs://localhost:9000/user/comp9313/output

| Variables... |

Warning: Note that if output already exists, you will meet an exception.

Remember to delete output 0N HDFS:

$ $HADOOP HOME/bin/hdfs dfs -rm -r output

If everything works normally, you will see the Hadoop running message in
Eclipse console:

[20 Problems | Tasks @ Javadoc (% Map/Reduce Locations | B Console 32 = K % ;@ IE] = Bl S~ = 0

<terminated>WordCount [Java Application] fusr/lib/jvm/java-7-openjdk-amd6é4/bin/java (7 Aug 2016 11:43:36 pm)

16/688/07 23:43:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using bui
16/88/07 23:43:38 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
16/88/07 23:43:38 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=

16/08/07 23:43:38 WARN mapreduce.JobResourcelUploader: Hadoop command-line option parsing not performed. Implement
16/08/07 23:43:38 WARN mapreduce.lobResourcelUploader: No job jar file set. User classes may not be found. See Jo
16/08/07 23:43:38 INFO input.FileInputFormat: Total input paths to process : 2

16/08/07 23:43:38 INFO mapreduce.JobSubmitter: number of splits:2

16/688/07 23:43:39 INFO mapreduce.JobSubmitter: Submitting tokens for job: job locall786724113 @061

16/08/07 23:43:39 INFO mapreduce.Job: The url to track the job: http://localhost:8080/

Note: If you still see the following warnings after you run the program, you
may need to restart eclipse.

log4j:WARN No appenders i1d be found for logger (org.apache.http.client.protocol.RequestAddCookies).
log4j:WARN Please initialize the log4j system p 1y
log4] : WARN e http://logging.apache.org/logd4j/1.2/faq.html#noconfig for more info.

Refresh “DFS Location”, you will see that a new folder “output™ is listed,
and you can click the file in the folder to see the results.

I3 Project Explorer 23 = 8 [3) wordCount.java [2l hdfs:/flocalhost:9000/user/comp9313/output/part-r-00000 32

lbye 1

=
S i 2 goodbye 1
¥ =] DFS Locations 3hadoop 2
. 4hello 2
~ M MapReduce Location Sworld 2
vE @ 6
b = tmp (1)

w = user(1)
= comp9313(2)
¥ == input (2)
w = output (2)
=| SUCCESS(0.0b,r3)

v = WordCount

v # src

Quiz: Split the code into three files: one for mapper, one for reducer, and
one for main (driver), and run the project again. Normally, in a MapReduce
project, we will put the three classes into different files.

Note that the mapper and reducer classes are not static in this case!

After you have set up the run configuration the first time, you can skip the
step of configuring the arguments in subsequent runs, unless you need to
change the arguments.

Now you’ve make the MapReduce job run in Eclipse. Note that Eclipse does
not use YARN to manage resources.

Package MapReduce Jobs using Eclipse

Once you've created your project and written the source code, to run the
project in pseudo-distributed mode and let YARN manage resources, we
need to export the project as a jar in Eclipse:

1. Right-click on the project and select Export.

2. In the pop-up dialog, expand the Java node and select JAR file. Click
Next.

~ Export + X
Select

Export resources into aJAR file on the local file system. E:ﬂ

Select an export destination:

type filter text a |

P (= General
P (= Install
¥ (= Java

@ Javadoc

.5 Runnable JAR file
» (= Run/Debug
b (= Tasks
b (= Team
b = XML

@ < Back I_] | Cancel ‘ ‘ Finish

3. Enter a path in the JAR file field and click Finish.

> JAR Export + X
JAR File Specification

Define which resources should be exported into the JAR. |

Select the resources to export:

[v Export generated class files and resources

=

.classpath

GG

=

.project

[Tl Expert all output folders for checked projects
[l Expert Java source files and resources

[Tl Export refactorings for checked projects.

Select the export destination:

JAR file: /home{comp93I3fWordCounl.iar| | - || Browse...

Options:
|»f Compress the contents of the JAR file
] Add directory entries

[_] Overwrite existing files without warning

® | < Back | Next > || Cancel |_]
a

4. Open a terminal and run the following command:

$ $HADOOP_ HOME/bin/hadoop jar ~/WordCount.jar comp9313.lab2.WordCount
hdfs://localhost:9000/user/comp9313/input

hdfs://localhost:9000/user/comp9313/output

Remember to delete the output folder in HDFS first!

You can also simply run the following command:

$ $HADOOP_HOME/bin/hadoop jar ~/WordCount.jar comp9313.lab2.WordCount
input output

By using the “hadoop” command, I/O is based on the distributed file system
by default, and /user/comp9313 is the default working folder.

Debugging Hadoop Jobs

To debug an issue with a job, the easiest approach is to run the job in
Eclipse and use a debugger. To debug your job, do the following step.

1. Set a watch point in TokenizerMapper in the while loop:

while (itr.hasMoreTokens()) {
word.set (itr.nextToken()) ;
context.write (word, one);

System.out.println (word. toString()) ;
}

Double click the line number of the red line in Eclipse to set the watch point.

2. Right-click on the project and select Debug As -> Java Application, and
open the debug perspective.

3. The program will run, and stop at the watch point:

[3) werdCount.java [3] TokenizerMapper.java 52 | [J] IntSumReducer.java = 0
9
10 public class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
11
12 private final static IntWritable ome = new IntWritable(1);
13 private Text word = new Text();
14
&5 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
System.out.println(word.toString());
}
24 }
Bl console 2 = 4

WordCount [Java Application] /usr/lib/jvm/java-7-openjdk-amd64/bin/java (8 Aug 2016 10:20:07 am)

16/08/08 10:28:11 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTasksMapOutputBuffer
16/08/08 10:28:11 INFO mapreduce.Job: Job job locall863792888 0081 running in uber mode : false

16/08/08 10:20:11 INFO mapreduce.Job: map 8% reduce 0%

16/08/08 10:20:17 INFO mapred.LocalJobRunner: map > map

16/88/08 10:20:17 INFO mapreduce.Job: map 33% reduce 0%

hello

Now you can use the Eclipse debugging features to debug your job
execution.

4. Logs are also very useful for you to debug your MapReduce program.

You can either print the debug information in stdout, or write the debug
information in the Hadoop system log.

Import the relevant log classes in the java file:

import org.apache.htrace.commons.logging.Log;
import org.apache.htrace.commons.logging.LogFactory;

In TokenizerMapper, add the following two lines after
“System.out.printin(word.toString());”:

Log log = LogFactory.getLog (TokenizerMapper.class) ;
log.info ("MyLog@Mapper: " + word.toString())

In the reducer class IntSumReducer, add the following lines at the end of the
reduce function:

System.out.println (key. toString()+ “ “ + result.toString());

Log log = LogFactory.getLog(IntSumReducer.class);
log.info ("MyLog@Reducer: " + key.toString() + “ “ +
result.toString())

Export the project as a jar file, and run it in the terminal again.
You will find your log messages in logs through different ways:

a) Through http://localhost:50070

Select Utilities->Logs, then click “userlogs/”, the log folder of your recent
job is shown at the bottom. Go into the folder, and you will see another four
log folders.

Directory: /logs/userlogs
/application_1470571242767_0008/

Parent Directory

container 1470571242767 0008 01 000001/ 4096 bytes 08/08/2016 10:49:51 AM
container 1470571242767 0008 01 000002/ 4096 bytes 08/08/2016 10:50:00 AM
container 1470571242767 0008 01 000003/ 4096 bytes 08/08/2016 10:50:00 AM
container 1470571242767 0008 01 000004/ 4096 bytes 08/08/2016 10:50:10 AM

Each map and reduce will record their own log. Enter the folder ending with
“000002”, and then click syslog, you can find:

2016-08-08 10:50:07,203 INFO [main] comp9313.1lab2.TokenizerMapper: Mylog@Mapper: hello

2016-08-08 10:50:07,203 INFO [main] comp9313.1ab2.TokenizerMapper: Mylog@Mapper: hadoop
2016-08-08 10:50:07,203 INFO [main] comp9313.1lab2.TokenizerMapper: Mylog@apper: goodbye
2016-08-08 10:50:07,203 INFO [main] comp9313.lab2.TokenizerMapper: Mylog@Mapper: hadoop

If you click stdout, you can find:

http://localhost:50070/

hello
hadoop
goodbye
hadoop

As you can see, System.out.printin() prints the information to stdout, while,
the Log class writes the information to syslog.

Enter the folder ending with “000003”, and then click syslog, you can find:

2016-08-08 10:58:07,225 INFO [main]
2016-08-88 108:50:07,225 INFO [main]
2016-08-08 10:50:07,226 INFO [main]
2016-08-88 108:50:07,226 INFO [main]

comp9313.1ab2 . TokenizerMapper:
comp9313.1ab2.TokenizerMapper:
comp9313.1ab2 . TokenizerMapper:
comp9313.1lab2.TokenizerMapper:

hello
world
bye

world

Mylog@Mapper:
Mylog@Mapper:
Mylog@Mapper:
Mylog@Mapper:

Enter the folder ending with “000004”, and then click syslog, you can find:

2016-08-08 15:
2016-08-08 15:

2016-08-08 15

19:12,883 INFO
19:12,883 INFO

:19:12,883 INFO
2016-08-08 15:
2016-08-08 15:

19:12,884 INFO
19:12,884 INFO

[main]
[main]
[main]
[main]
[main]

comp9313. 1ab2.TokenizerMapper:
comp9313. 1ab2.TokenizerMapper:
comp9313. 1ab2.TokenizerMapper:
comp9313. 1ab2.TokenizerMapper:
comp9313. 1ab2.TokenizerMapper:

bye 1
goodbye 1
hadoop 2
hello 2
world 2

Mylog@Reducer:
Mylog@Reducer:
Mylog@Reducer:
Mylog@Reducer:
Mylog@Reducer:

If you click stdout, you will see:

bye 1
goodbye 1
hadoop 2
hello 2
world 2

b) Through http://localhost:8088

Your recent MapReduce job is listed at the top of the list. Click the

application ID, and you will see:

User:

Name:

Application Type:
Application Tags:
YarnApplicationState:
FinalStatus Reported by AM:
Started:

Elapsed:

Tracking URL:

Diagnostics:

comp9313
word count
MAPREDUCE

FINISHED
SUCCEEDED

23sec
History

Total Resource Preempted:
: 0

Total of Non-AM C s Pr

Total of AM C s Pr

of Non-AM C s Pr

show 20 -|entries
Attempt ID = Started <

appattempt_1470571242767_0008_000001 Mon Aug 8
10:49:50 +1000
2016

Node i

http:f/comp9313- Logs
VirtualBox:8042

Showing 1 to 1 of 1 entries

Logs

Application Overview

Mon Aug 08 10:49:50 +1000 2016

Application Metrics
<memory:0, vCores:0>

: 0
Resource Preempted from Current Attempt:
i from Current Attempt:
Aggregate Resource Allocation:

<memory:0, vCores:0>
0
84738 MB-seconds, 52 vcore-seconds

Search:

< Blacklisted Nodes <
N/A

Click Logs, and you can view the logs in the webpage. Note that only the

log folder ending with “000001” is shown (i.e.,

the logs of the driver). You

http://localhost:8088/

can change the URL to see other log folders. For example, you can replace
“000001” with “000002” to see the logs of the first mapper.

¢) Through your local machine.

Open terminal, cd to the Hadoop log folder to check the logs for your job:

$ cd $HADOOP_LOG_DIR/userlogs

For large MapReduce project, using logs is the best way to debug your code.

Write Your Own Hadoop Job

1. Download the test file, and put it to HDFS:

$ wget http://www.gutenberg.org/cache/epub/100/pgl00. txt
$ $HADOOP_HOME/bin/hdfs dfs -rm input/*
$ $HADOOP_HOME/bin/hdfs dfs —-put ~/pgl00.txt input

2. Run the word count java program to check the results.

3. Now you will write your first MapReduce job to accomplish the
following task:

Write a Hadoop MapReduce program which outputs the number of words
that start with each letter. This means that for every letter we want to count
the total number of words that start with that letter. In your implementation
ignore the letter case, i.e., consider all words as lower case. You can ignore
all non-alphabetic characters. Create a class “LetterCount.java” in package
“comp9313.lab2 ” to finish this task.

Hint: In the (key, value) output, each letter is the key, and its count is the
value.

1. How to set a reducer properly?
2. How to write a combiner?

Compare your results with the answer provided at:
https://webcms3.cse.unsw.edu.au/COMP9313/17s1/resources/7147

(Optional Problem) Try to work on the following problem: compute the
average length of words starting with each letter. This means that for every
letter, we want to compute the total length of all words that start with that
letter divided by the total number of words that start with that letter.

http://www.gutenberg.org/cache/epub/100/pg100.txt
https://webcms3.cse.unsw.edu.au/COMP9313/17s1/resources/7147

