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Randomized Algorithms

Turing machines do not inherently have access to randomness.

Assume algorithm is also given access apart to a stream of random bits.

With r random bits, the probability space is the set of all 2r possible strings
of random bits (with uniform distribution).
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Monte Carlo algorithms

Definition 1
A Monte Carlo algorithm is an algorithm whose output is incorrect with
probability at most p.

A one sided error means that an algorithm’s input is incorrect only on true
outputs, or false outputs but not both.

A false negative Monte Carlo algorithm is always correct when it returns false.

Suppose we have an algorithm A for a decision problem which:

If no-instance: returns “no”.

If yes-instance: returns “yes” with probability p.

Algorithm A is a one-sided Monte Carlo algorithm with false negatives.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 5 / 37



Monte Carlo algorithms

Definition 1
A Monte Carlo algorithm is an algorithm whose output is incorrect with
probability at most p.

A one sided error means that an algorithm’s input is incorrect only on true
outputs, or false outputs but not both.

A false negative Monte Carlo algorithm is always correct when it returns false.

Suppose we have an algorithm A for a decision problem which:

If no-instance: returns “no”.

If yes-instance: returns “yes” with probability p.

Algorithm A is a one-sided Monte Carlo algorithm with false negatives.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 5 / 37



Monte Carlo algorithms

Definition 1
A Monte Carlo algorithm is an algorithm whose output is incorrect with
probability at most p.

A one sided error means that an algorithm’s input is incorrect only on true
outputs, or false outputs but not both.

A false negative Monte Carlo algorithm is always correct when it returns false.

Suppose we have an algorithm A for a decision problem which:

If no-instance: returns “no”.

If yes-instance: returns “yes” with probability p.

Algorithm A is a one-sided Monte Carlo algorithm with false negatives.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 5 / 37



Problem

Problem
Suppose A is a one-sided Monte Carlo algorithm with false negatives, that with
probability p returns “yes” when the input is a yes-instance. How can we use A
and design an a new algorithm which ensures a new success probability of a
constant C?

Let t = − ln(1−C)
p and repeat t times. Failure probability is

(1− p)t ≤ (e−p)t =
1

ept
= 1− C

via the inequality 1− x ≤ e−x.
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Amplification

Theorem 2

If a one-sided error Monte Carlo Algorithm has success probability at least p, then
repeating it independently d 1pe times gives constant success probability. In

particular if p = 1
f(k) for some computable function f , then we get an FPT

one-sided error Monte Carlo Algorithm with additional f(k) overhead in the
running time bound.
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Vertex Cover

For a graph G = (V,E) a vertex cover X ⊆ V is a set of vertices such that every
edge is adjacent to a vertex in X.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

Theorem 3
There exists a randomized algorithm that, given a Vertex Cover instance
(G, k), in time 2knO(1) either reports a failure or finds a vertex cover on k vertices
in G. Moreover, if the algorithm is given a yes-instance, it returns a solution with
constant probability.
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Solution

Proof.
Pick an edge at random and then pick one of the endpoints of that edge with
probability 1

2 .

Repeating this k times finds a vertex cover with probability at least 1
2k

.

Applying Theorem 2 gives a randomized FPT running time of 2k · nO(1).
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊂ V such
that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G, integer k
Parameter: k
Question: Does G have a feedback vertex of size k?

Recall 5 simplification rules for Feedback Vertex Set.
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Solution: Simplification

1 Loop: If loop at vertex v, remove v and decrease k by 1

2 Multiedge: Remove all edges of multiplicity greater than 2, to exactly 2.

3 Degree-1: If v has degree at most 1 then remove v.

4 Degree-2: If v has degree 2 with neighbors u,w then delete 2 edges uv, vw
and replace with new edge uw.

5 Budget: If k < 0, terminate algorithm and return no.

Refer to Lecture 6 for soundness of simplification rules.
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Lemma

Lemma 4

Let G be a multigraph on n vertices, with minimum degree at least 3. Then, for
every feedback vertex set X of G, at least 1/3 of the edges have at least one end
point in X.

Proof.

The graph G has minimum degree 3, this means it has at least 3n/2 edges. Let
G\X = F be the forest that remains. There at most n− 1 edges in the forest F .
This means that at least 1

3 of the edges are in X.
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Random Algorithm

Theorem 5
There is a randomized algorithm that, given a Feedback Vertex Set instance
(G, k), in time 6knO(1) either reports a failure or finds a feedback vertex set in G
of at most k. Moreover, if the algorithm is given a yes-instance, it returns a
solution with constant probability.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 15 / 37



Solution

Proof.

First apply simplification rules 1-5 in order to obtain a multigraph G′ with
minimum degree at least 3 and we wish to find feedback vertex set X ′ of size
k′.

Lemma 4 implies with probability greater than 1
3 , a randomly chosen edge e

has at least one endpoint in X ′. So with probability greater than 1
2 ×

1
3 = 1

6 ,
a randomly chosen endpoint of e belongs to X ′.

By inductive process, a recursive call finds a feedback vertex set in graph

G′ − {v} of size k′ − 1 with probability
(
1
6

)k−1
. Hence X ′ can be found with

probability at least
(
1
6

)k
.

Applying Theorem 2 gives a randomized FPT running time of 6k · nO(1).
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Lemma 2

Lemma 6
Let G be a multigraph on n vertices, with minimum degree 3. For every feedback
vertex set X, then at least 1

2 of the edges of G have at least one endpoint in X.

Hint: Let H = G−X be a forest. The statement is equivalent to:

|E(G)\E(H)| > |V (H)| > |E(H)|

Let J ⊆ E(G) denote edges with one endpoint in X, and the other in V (H).
Show:

|J | > |V (H)|
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Solution

Proof.
Let V≤1, V2, V≥3 be set of vertices that have degree at most 1, exactly 2, and
at least 3 respectively in H.

Since G has min degree 3 then each vertex in V≤1 contributes at least 2
edges to J . Each vertex V2 contributes at least 1 edge to J .

Note H is a forest, we inductively show |V≥3| < |V≤1|.
Trivially true for empty forest and single vertex.
Assume true for forests of size n− 1, i.e. |V ′≥3| < |V ′≤1|
For any forest of size n, consider removing a leaf (which must always exist).
If |V≥3| = |V ′≥3|+ 1 then |V≤1| = |V ′≤1|+ 1.

This results in:

|E(G)\E(H)| ≥ |J | ≥ 2|V≤1|+ |V2| > |V≤1|+ |V2|+ |V≥3| = |V (H)|
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Random Algorithm 2

Lemma 7
There exists a randomized algorithm that, given a Feedback Vertex Set
instance (G, k), in time 4knO(1) either reports a failure or finds a path on k
vertices in G. Moreover, if the algorithm is given a yes-instance, it returns a
solution with constant probability.
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Corollary

Corollary 8

Given a Feedback Vertex Set instance (G, k), in time 4knO(1) there is an
algorithm that either reports a failure or if given a yes-instance finds a feedback
vertex set in G of size at most k with constant probability.
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Longest Path

A simple path is a sequence of edges which connect a sequence of distinct vertices.

Longest Path
Input: Graph G, integer k
Parameter: k
Question: Does G have a simple path of size k?

Problem
Show that Longest Path is NP-hard.

Reduction from Hamiltonian Path with k = n− 1.
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Color Coding

Lemma 9

Let U be a set of size n, and let X ⊆ U be a subset of size k. Let χ : U → [k] be
a coloring of the elements of U , chosen uniformly at random. Then the probability
that the elements of X are colored with pairwise distinct colors is at least e−k.

Proof.

There are kn possible colorings χ and k!kn−k of them are injective on X. The
lemma follows from the inequality

k! > (k/e)k.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 23 / 37



Color Coding

Lemma 9

Let U be a set of size n, and let X ⊆ U be a subset of size k. Let χ : U → [k] be
a coloring of the elements of U , chosen uniformly at random. Then the probability
that the elements of X are colored with pairwise distinct colors is at least e−k.

Proof.

There are kn possible colorings χ and k!kn−k of them are injective on X. The
lemma follows from the inequality

k! > (k/e)k.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 23 / 37



Colorful Path

A path is colorful if all vertices of the path are colored with pairwise distinct colors.

Lemma 10

Let G be an undirected graph, and let χ : V (G)→ [k] be a coloring of its vertices
with k colors. There exists a determinisitic algorithm that checks in time 2knO(1)

whether G contains a colorful path on k vertices and, if this is the case, returns
one such path.
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Solution

Proof.

Parition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.

Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈
⋃

i∈S Vi let
P (S, u) = true if there is a colorful path with colors from S and u as an
endpoint. We have the following:

For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.
For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in 2knO(1) time and there exists a colorful
k-path iff P ([k], v) is true for some vertex v ∈ V (G).
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Longest Path

Theorem 11
There exists a randomized algorithm that, given a Longest Path instance
(G, k), in time (2e)knO(1) either reports a failure or finds a path on k vertices in
G. Moreover, if the algorithm is given a yes-instance, it returns a solution with
constant probability.
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Exact Exponential Algorithms vs Parameterized Algorithms

Exact Exponential Algorithms

Find exact solutions with respect to
parameter n, the input size.

Feedback Vertex set O(1.7347n)
[Fomin, Todinca and Villanger 2015]

Running Time: O(αnnO(1))

Parameterized Algorithms

Include parameter k, commonly the
solution size.

Feedback Vertex Set: O(3.592k)
[Kociumaka and Pilipczuk 2013]

Running Time: O(f(k) · nO(1))

Can we use Parameterized Algorithms to design fast Exact Exponential
Algorithms?
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Subset Problems

An implicit set system is a function Φ with:

Input: instance I ∈ {0, 1}∗, |I| = N

Output: set system (UI ,FI):

universe UI , |UI | = n
family FI of subsets of UI

Φ-Subset
Input: Instance I
Question: Is |FI | > 0

Φ-Extension
Input: Instance I, a set X ⊆ UI , and an integer k
Question: Does there exist a subset S ⊆ (UI\X) such that S ∪X ∈ FI and

|S| ≤ k?
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Algorithm

Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether FI contains a set of size k

Set t = max
(

0, ck−nc−1

)
Uniformly at random select a subset X ⊆ UI of size t

Run B(I,X, k − t)

Running time: [Fomin, Gaspers, Lokshtanov & Saurabh 2016]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 30 / 37



Algorithm

Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether FI contains a set of size k

Set t = max
(

0, ck−nc−1

)
Uniformly at random select a subset X ⊆ UI of size t

Run B(I,X, k − t)

Running time: [Fomin, Gaspers, Lokshtanov & Saurabh 2016]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 30 / 37



Intuition

Brute-force randomized algorithm

Pick k elements of the universe one-by-one.

Suppose FI contains a set of size k.

Success probability:

k

n
· k − 1

n− 1
· ...·k − t

n− t
· ... · 2

n− (k − 2)

1

n− (k − 1)
=

1(
n
k

)
=

1

c
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Theorem

Theorem 12

If there exists an algorithm for Φ-Extension with running time cknO(1) then
there exists a randomized algorithm for Φ-Subset with running time
(2− 1

c )n · nO(1)

Can be derandomized at the expense of a multiplicative 2o(1) factor in the
running time.

Theorem 13
For a graph G there exists a randomized algorithm which finds a smallest
feedback vertex set in time

(
2− 1

3.592

)n · nO(1) = 1.7217n · nO(1).

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 32 / 37



Theorem

Theorem 12

If there exists an algorithm for Φ-Extension with running time cknO(1) then
there exists a randomized algorithm for Φ-Subset with running time
(2− 1

c )n · nO(1)

Can be derandomized at the expense of a multiplicative 2o(1) factor in the
running time.

Theorem 13
For a graph G there exists a randomized algorithm which finds a smallest
feedback vertex set in time

(
2− 1

3.592

)n · nO(1) = 1.7217n · nO(1).

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 32 / 37



Theorem

Theorem 12

If there exists an algorithm for Φ-Extension with running time cknO(1) then
there exists a randomized algorithm for Φ-Subset with running time
(2− 1

c )n · nO(1)

Can be derandomized at the expense of a multiplicative 2o(1) factor in the
running time.

Theorem 13
For a graph G there exists a randomized algorithm which finds a smallest
feedback vertex set in time

(
2− 1

3.592

)n · nO(1) = 1.7217n · nO(1).

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 32 / 37



References

Chapter 5, Randomized methods in parameterized algorithms by
Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Exact Algorithms via Monotone Local Search, Fedor V. Fomin, Serge
Gaspers, Daniel Lokshtanov, Saket Saurabh. ACM symposium on Theory of
Computing, 2016.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 33 / 37



Exercise 1

1-Regular Deletion
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does there exist X ⊆ V with |X| ≤ k such that G − X is

1-regular?

Design a randomized FPT algorithm with running time O∗(4k)
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Solution 1

Solution
If there is a vertex with degree 0, then remove it and reduce k by 1.

If v has degree 1, remove all vertices at distance at most 2 from v, and
reducing k by the number of vertices at distance 2 from v.

Graph now has minimum degree 2. If yes-instance then deletion set X is

incident to at least |E|2 edges.

Choose edge at random and then an endpoint of the chosen at at random for
a 1

4 probability of selecting a vertex in X.
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Exercise 2

Triangle Packing
Input: Graph G, integer k
Parameter: k
Question: Does G have k-vertex disjoint triangles?

Design a randomized FPT algorithm for Triangle Packing.

E. Lee (UNSW) Randomized Algorithms Semester 2, 2017 36 / 37



Solution 2

By considering a random 3k coloring χ of the vertices, Lemma 9 provides an
algorithm to return a subset X of size 3k are pairwise distinct with e−3k

success probability.

For a graph G and coloring χ : V (G)→ [3k], in a similar manner to Lemma
10 we design an algorithm that checks whether G contains a triangle packing
on 3k vertices such that all vertices are pairwise distinctly colored. We do the
following:

Enumerate though all possible ways of partitioning 3k colors into k bags of
exactly 3 colors each. There are exactly 3k!

(3!)kk!
of these ways.

For a bag, let these colors be i, j, k and consider the vertex partition Vi, Vj , Vk.
Using these vertices we check if there exists a triangle using vertices from
Vi ∪ Vj ∪ Vk such that each vertex is a different color. This can be computed
in time n3. Repeating this for all k bags only requires k · n3 time.
Running time of this algorithm is still FPT.
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