
1

Interrupts (II)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

2

External Interrupts

 The external interrupts are triggered by the

INT7:0 pins.

 If enabled, the interrupts will trigger even if the

INT7:0 are configured as outputs

 This feature provides a way of generating a software

interrupt.

 Can be triggered by a falling or rising edge or a

logic level

 Specified in External Interrupt Control Register

▪ EICRA (for INT3:0)

▪ EICRB (for INT7:4)

3

External Interrupts (cont.)

 To enable an interrupt, two bits must be set

 I bit in SREG

 INTx bit in EIMSK

 To activate an interrupt, the following must be

met:

 The interrupt must be enabled

 The associated external pin must have a

designed signal asserted.

4

EIMSK

 External Interrupt Mask Register

 A bit is set to enable the related interrupt

5

EICRA
 External Interrupt Control Register A

 For INT0-3

 Defines the type of signals that activates the external

Interrupt

 on rising or falling edge or level sensed.

6

EICRB
 External Interrupt Control Register B

 For INT4-7

 Defines the type of signals that activates the External

Interrupt

 on rising or falling edge or level sensed.

7

EIFR

 Interrupt flag register

 A bit is set when an event-triggered interrupt is

enabled and the related event on the related INT

pin happens.

 Event-triggered interrupt: signal edge activated.

8

Example 1

 Design a system, where the state of LEDs

toggles under the control of the user.

9

Example 1 (solution)

 Use an external interrupt

 Connect the external interrupt pin to a push button

 When the button pressed, the interrupt is generated

 In the assembly code

 Set up the interrupt

 Set up the interrupt vector

 Enable the interrupt

 Write a service routine for this interrupt

 Change the display pattern

 Write the pattern to the port connected to the LEDs

10

Code for Example 1
.include "m2560def.inc“

.def temp =r16

.def output = r17

.def count = r18

.equ PATTERN = 0b01010101

; set up interrupt vectors
jmp RESET

.org INT0addr
jmp EXT_INT0

RESET:
ldi temp, low(RAMEND) ; initialize stack
out SPL, temp
ldi temp, high(RAMEND)
out SPH, temp

ser temp ; set Port C as output
out DDRC, temp
out PORTC, temp
ldi output, PATTERN

; continued

11

Code for Example 1
; continued

ldi temp, (2 << ISC00) ; set INT0 as falling-
sts EICRA, temp ; edge triggered interrupt

in temp, EIMSK ; enable INT0
ori temp, (1<<INT0)
out EIMSK, temp

sei ; enable Global Interrupt
jmp main

EXT_INT0:
push temp ; save register
in temp, SREG ; save SREG
push temp

com output ; flip the pattern
out PORTC, output
inc count

pop temp ; restore SREG
out SREG, temp
pop temp ; restore register
reti

12

Code for Example 1
; continued

; main - does nothing but increment a counter
main:

clr count
clr temp

loop:
inc temp ; a dummy task in main
rjmp loop

13

Timer/Counters

 Simply binary counters

 Used in two different modes:
 Timer

 Counting time periods

 Counter

 Counting the events or pulse or something of this nature

 Can be used to
 Measure time periods, speed, frequency

 Generate PWM signals

 Schedule real-time tasks

 etc.

14

Timer/Counters in AVR

 In AVR, there are 8-bit and 16-bit

timer/counters.

 Timer 0 and Timer 2: 8-bit

 Timer 1,3-5 16-bit

15

8-bit Timer/Counter Block

Diagram

16

8-bit Timer/Counter

 The counter can be initialized with

 0 (controlled by reset)

 a number (controlled by count signal)

 Can count up or down

 controlled by direction signal

 Those controlled signals are generated by hardware control
logic

 The control logic is further controlled by programmer by

 Writing control bits into TCCRnA/TCCRnB

 Output

 Overflow interrupt request bit

 Output Compare interrupt request bit

 OCn bit: Output Compare bit for waveform generation

17

TIMSK0

 Timer/Counter Interrupt Mask Register

 Set TOIE0 (and I-bit in SREG) to enable the

Overflow Interrupt

 Set OCIE0(A/B) (and I bit in SREG) to enable

Compare Match Interrupt

Control bits for timer/counter0

18

TIFR0
 Timer/Counter Interrupt Flag Register

 OCF0(A/B) bit is set when a Compare Match between the

counter and the data in OCR0(A/B) (Output Compare

Registers).

 When (I=1)&&(OCIE0(A/B)=1)&&(OCF0(A/B)=1), the

related Timer/Counter Compare Match Interrupt is

executed.

 OCF0(A/B) bit is cleared by hardware when the related

interrupt is handled or can be cleared by writing a logic 0 to

the flag

Interrupt control bits for timer/counter0

19

TIFR0 (cont.)
 Timer/Counter Interrupt Flag Register

 TOV0 bit is set when an overflow occurs in the counter.

 When (I=1)&&(TOIE0=1)&&(TOV0=1), the related

Timer/Counter Overflow Interrupt is executed.

 In PWM mode, this bit is set when the counter changes

counting direction at 0x00

 OCF0(A/B) bit is cleared by hardware when the related

interrupt is handled or can be cleared by writing a logic 0 to

the flag

Interrupt control bits for timer/counter0

20

TCCR0A/B

 Timer Counter Control Register

 For Timer/Counter0

 Similar registers for other timers

21

TCCR0 Bit Description

 COM0xn/WGM0n/FOC0

 Control the mode of operation

 The behavior of the Timer/Counter and the output, is defined by

the combination of the Waveform Generation mode (WGM02:00)

and Compare Output mode (COM0x1:0) bits.

 The simplest mode of operation is the Normal Mode (WGM02:00

=00). In this mode the counting direction is always up. The

counter rolls over when it passes its maximum 8-bit value (TOP =

0xFF) and then restarts from the bottom (0x00).

 Refer to Mega2560 Data Sheet (pages 118~194) for details.

22

TCCR0 Bit Description (cont.)
 Bit 2:0 in TCCR0B

 Control the clock selection

23

Example 2

 Implement a scheduler that can execute a

task every one second.

24

Example 2 (solution)

 Use Timer0 to count the time

 Let’s set Timer0 prescaler to 8

 The time-out for the setting should be
▪ 256*(clock period) = 256*8/(16 MHz)

= 128 us

▪ Namely, we can set the Timer0 overflow interrupt that is to occur every
128 us.

▪ Note, Clktos = 1/16 MHz (obtained from the data sheet)

 For one second, there are
▪ 1000000/128 = ~7812 interrupts

 In code,

 Set Timer0 interrupt to occur every 128 microseconds

 Use a counter to count to 7812 interrupts for counting 1 second

 To observe the 1 second time period, toggle an LED every
second.

25

Example 3
; This program implements a timer that counts one second using

; Timer0 interrupt

.include "m2560def.inc"

.equ PATTERN = 0b11110000

.def temp = r16

.def leds = r17

; The macro clears a word (2 bytes) in a memory

; the parameter @0 is the memory address for that word

.macro clear

ldi YL, low(@0) ; load the memory address to Y

ldi YH, high(@0)

clr temp

st Y+, temp ; clear the two bytes at @0 in SRAM

st Y, temp

.endmacro

; contined

26

Example 3
; continued
.dseg
SecondCounter:

.byte 2 ; Two-byte counter for counting seconds.
TempCounter:

.byte 2 ; Temporary counter. Used to determine
; if one second has passed

.cseg

.org 0x0000
jmp RESET
jmp DEFAULT ; No handling for IRQ0.
jmp DEFAULT ; No handling for IRQ1.

.org OVF0addr
jmp Timer0OVF ; Jump to the interrupt handler for

; Timer0 overflow.
…
jmp DEFAULT ; default service for all other interrupts.

DEFAULT: reti ; no service
; continued

27

Example 3

; continued

RESET: ldi temp, high(RAMEND) ; Initialize stack pointer

out SPH, temp

ldi temp, low(RAMEND)

out SPL, temp

ser temp ; set Port C as output

out DDRC, temp

rjmp main

; continued

28

Example 3

; continued

Timer0OVF: ; interrupt subroutine to Timer0

in temp, SREG

push temp ; Prologue starts.

push YH ; Save all conflict registers in the prologue.

push YL

push r25

push r24 ; Prologue ends.

; Load the value of the temporary counter.

lds r24, TempCounter

lds r25, TempCounter+1

adiw r25:r24, 1 ; Increase the temporary counter by one.

; continued

29

Example 3

cpi r24, low(7812) ; Check if (r25:r24) = 7812

ldi temp, high(7812) ; 7812 = 106/128

cpc r25, temp

brne NotSecond

com leds

out PORTC, leds

clear TempCounter ; Reset the temporary counter.

; Load the value of the second counter.

lds r24, SecondCounter

lds r25, SecondCounter+1

adiw r25:r24, 1 ; Increase the second counter by one.

; continued

30

Example 3
sts SecondCounter, r24

sts SecondCounter+1, r25

rjmp EndIF

NotSecond:

; Store the new value of the temporary counter.

sts TempCounter, r24

sts TempCounter+1, r25

EndIF:

pop r24 ; Epilogue starts;

pop r25 ; Restore all conflict registers from the stack.

pop YL

pop YH

pop temp

out SREG, temp

reti ; Return from the interrupt.
; continued

31

Example 3

main:

ldi leds, 0xFF

out PORTC, leds

ldi leds, PATTERN

clear TempCounter ; Initialize the temporary counter to 0

clear SecondCounter ; Initialize the second counter to 0

ldi temp, 0b00000000

out TCCR0A, temp

ldi temp, 0b00000010

out TCCR0B, temp ; Prescaling value=8

ldi temp, 1<<TOIE0 ; = 128 microseconds

sts TIMSK0, temp ; T/C0 interrupt enable

sei ; Enable global interrupt

loop: rjmp loop ; loop forever

32

Reading Material

 Chapter 8: Interrupts and Real-Time Events.

Microcontrollers and Microcomputers by

Fredrick M. Cady.

 Mega2560 Data Sheet.

 External Interrupts.

 Timer0

33

Homework

1. What do you need to do to set up an Timer0

Output Compare Match Interrupt?

34

Homework

2. Based on the Example 1 in this week lecture

slides, implement a software interrupt such

that when there is an overflow in the counter

that counts the number of LED toggles, all

LEDs are turned on.

