
More on REST services

SENG3011 Implementation Workshop

2

Outline

 Programmable Web
 Resource Oriented Architecture
□ REST (video https://www.youtube.com/watch?v=7YcW25PHnAA)
□ ROA Properties
□ Service interactions
□ Service design issues

3

 The Programmable Web use the same technologies and
communication protocols of the WWW

 Difference:
□ The data is not delivered necessarily for human consumption
□ A client can be implemented using any programming language

 Technologies
□ Services and APIs
□ Transport protocol: Hyper Text Transfer Protocol (HTTP)
□ Clients: Browser, Java, Web API, …
□ Data serialization languages

The Concept of Programmable Web

4

 ‘logical units with clearly defined interfaces(API):’
□ What functionality they perform
□ Which data formats they accept and produce

 They are application independent
 Services can be used by other services and applications
 Web services are not prepared to human consumption (in

contrast to websites).
□ Web services require an architectural style to provide clear

and unambiguous interaction (clearly defined interfaces).

Web Services

5

 Application Programming Interfaces
□ A good analogy is the electricity wall socket

 Endpoints addressable over the Web are
called Web APIs.

 How the service is exposed:
 Protocol semantics
 Application semantics

 We frequently use Web API instead of
Web services but they are not the same

 We will be focusing on the RESTfull Web
API

Web API

- Service: Electricity
- Conforms to specs:
220V, 60Hz …
- Fitting patterns are

defined
- Through the standard

interface all
connecting
equipment
(consumers) work

- A layer of abstraction

6

 Making functionality available over the web changed the way
software functionality delivered.

 If you needed a CRM functionality in 1990s you had to invest in
hardware, software, the CRM experts, training …

 Today’s CRM providers like Salesforce use cloud to deliver the
functionality.
□ Multi-tennacy – sharing common infrastructure among customers.

□ Using web browsers was the norm to access this functionality

□ Today customers are granted API level access
 Non salesforce applications can easily use the services.

 Thousands of companies are changing their strategies toward
delivering functionality through Web APIs:
□ https://www.programmableweb.com/apis/directory is a good source

Market Impact

https://www.programmableweb.com/apis/directory

7

 A way of providing interoperability between computer systems on
the Internet.
□ REST-compliant Web services allow requesting systems to access and

manipulate textual representations of Web resources using a uniform and
predefined set of stateless operations.

 An architectural style of building networked systems
□ a “design guideline” for building a system (or a service in our context) on the

Web

□ defines a set of architectural constraints in a protocol

 REST is built on standards:
□ HTTP, URL, XML/HTML/JPEG/ … (resource representations)
□ text/xml, text/html, image/gif, image/jpeg, … (MIME Types)

 REST itself is not an official standard specification

Representational State Transfer (REST)

8

 A thing that users want to create a link to, retrieve,
annotate, or perform other operations on.

 A resource:
□ is unique (i.e., can be identied uniquely)
□ has at least one representation,
□ has one or more attributes beyond ID
□ has a potential schema, or definition
□ can provide context
□ is reachable within the addressable universe

 collections, relationships (structural, semantic)

What is a Resource

9

 Web is comprised of resources
 UNSW can define SENG3011 as a resource
□ Students can access this resource through a URL:
□ http://www.unsw.edu.au/course/SENG3011

 Representation is returned SENG3011.html –
□ The representation place client application in a state
□ Client can access another resource in COMP3392.html
□ The new representation places client in another state

 The client application transfer states with each resource
representation.

Representational State Transfer?

10

 ROA:
□ Architecture for creating Web APIs that conforms to the REST

design principles
□ Base technologies: URLs, HTTP and Hypermedia

 Web Services with a ROA architecture are called
RESTful Web Services (Restfull Web APIs)

 HTTP requests are used to manipulate the state of a
resource
URI: Identifies the resource to manipulate
 http://www.unsw.edu.au/course/SENG3011
HTTP method: The action to be performed to manipulate the resource

Resource Oriented Architectures

11

 Addressability
 Uniform interface
 Statelessness
 Connectedness

ROA Properties

12

 More suitable:
□ where real-time interaction with minimal delays is needed,
□ where subsequent actions are dependent on the response

received for the previous message transferred,
□ further actions need to be performed in sequential manner.

 Example:
□ ATM machine need to interact with the back-end system to

check the available balance.

Synchronous

13

 More suitable:
□ where systems have long running jobs and there is no need

of real-time responses.
□ when you need low latency – blocking a call may slow the

system

 Example:
□ An ERP system needs to publish some information so that any

interested parties can subscribe to that and get the updates.

Asynchronous

14

Request/Response Collaboration

 Well aligned with
synchronous
communication

 For asynchronous
applications adaptation
is required:
□ Start the operation
□ Register a call back

 ask server to notify when
the operation complete

1-Customer orders an item
2-Payment is processed
3-The system check the availability and
the need for reorder

15

Event based collaboration

 Process announce what
happened

 Other services decides
what to do

 Business logic is
distributed

 Highly decoupled – can
add new services easily.

- The UI Service raises Order-Requested event
- Orders Service and the Stock Service react to the

raised event.
- Order service raise Order-Confirmed event
- UI Service reacts to Order-Confirmed

16

Processes That Spans Across Services

17

Orchestration

□ Create a central control
mechanism within:
CustomerService

□ Once the process initiated
CustomerService send
request to other services.

□ We can model into code or
use BPM software.

□ - Tightly coupled
□ - High cost to change
□ + Can monitor the status of

the process.

18

Choreography

 Customer Service
created the event.

 All services subscribe to
this event react to it.

 + Loosely coupled
 + Easy to change
 - Additional work is

needed to monitor the
status of the process.

19

Reactive Systems

 Systems that are* :
□ Responsive,
□ Resilient,
□ Elastic and
□ Message Driven

 Asynchronous, nonblocking
message-passing that
establish a boundary
between components…

 that ensures loose
coupling, isolation and
location transparency. *

Th
e

R
ea

ct
iv

e
M

an
ife

st
o

20

Sequential vs Asynchronous Execution

21

Synch Blocking vs Asynch Nonblocking

22

 Stateless:
□ Deals with behavior, pure business logic
□ Sending an email
□ Displaying the fuel consumption for the moment
□ HTTP protocol

 Stateful:
□ Deals with keeping records of things
□ Expecting an acknowledgement for the email sent
□ Displaying the average fuel consumption for a period.
□ FTP protocol

Separation of Stateful from Stateless

23

 Decoupling behaviour from state enable us to scale up
the stateless processes.

 Scaling up stateless processes is easy.
□ You can run KM to Miles Conversion on multiple nodes easily
□ Various platforms exists: AWS Lamda is a popular exaple

 Scaling up the stateful part is difficult
□ The aggregate is the only strongly consistent truth
□ Single active instance can run at a time
□ Usually scaled up by using active/passive availability

clusters
 (Establishing fully redundant instances of nodes, brought online

when its associated primary node fails)

Scaling up

24

 Before Databases, Accountants used to keep all the
transactions that accured: in journals and ledgers.

 Sample: Transactions and a corresponding Journal

Rethinking Persistence

Date Transaction

Jan 2 An amount of $36,000 was paid
as advance rent for three months.
Jan 3 Paid $60,000 cash on the
purchase of equipment costing
$80,000. The remaining amount was
recognized as a one year note
payable.
Jan 4 Purchased office supplies
costing $17,600 on account.
Jan 13 Provided services to its
customers and received $28,500
in cash.

Date Account Debit
 Credit
Jan 1 Cash 100,000
 Common Stock 100,000
Jan 2 Prepaid Rent 36,000
 Cash 36,000
Jan 3 Equipment 80,000

 Cash 60,000
 Notes Payable 20,000
Jan 4 Office Supplies 17,600
 Accounts Payable
 17,600
Jan 13 Cash 28,500
 Service Revenue 28,500
J 13 A t P bl 17 600

25

Journals vs Databases

 Journal
□ Show the complete history

of the transactions
□ One never alter the journal

 If an error is made it is
compensated by a new entry
into the journal

□ There is no concept of
update-in-place
(overwriting existing record
with new data)

 Database
□ Show the current state of

the data.
 Diskspace was very

expensive to depict all the
history

□ SQL databeses use CRUD
to eliminates redundancy
by only depicting the
current state of the data

What if we don’t have the diskspace constraint?

26

 Events are stored in the order that they are created
□ It is a database of everything that has happened in the system.

 Time is a natural index
□ You can reverse back for any purpose
□ Debugging, Auditing …

 Event Sourcing – A pattern for event logging.
□ State change is captured as a new event to be stored in event

log.
 OrderCreated, PaymentAuthorized, EmailSent …

□ The aggregate can cache the dataset in memory (the latest state)
□ Event sourced aggregates use ‘Event Streams’ to publish events to

other services.

Event Logging

27

 Back Pressure
□ A pattern for flow control
□ When we have fast producer and slow consumer
□ Consumer manages the flow by signaling producers

 Circuit Braker
□ A Finite State Machine – Closed/Open/Half-Open
□ The default state is Closed
□ When a failure detected it moves to Open State
□ When Open, it does not let any request to go through
□ After time-out, it moves to Half-Open state
□ In Half-Open, if the next request fails it goes to Open otherwise

goes to Closed.

Other Useful Design Patterns

28

 Microservices are services modeled after a business
domain

 Conwey’s Principle:
□ Any organization that designs a system (defined more broadly

here than just information systems) will inevitably produce a
design whose structure is a copy of the organization’s
communication structure

 Information Systems Department of an Army:
□ How will the communication structure shape?

 Command and control

□ Who will be the project manager?
 The highest ranking officer

 A startup ? Will you give the same answers?

Organizations and Microservices

29

Comparing Amazon and Raytheon

 Amazon
□ The culture:

 Small teams – two pizza
teams

 Teams owns the whole
lifecyce of the systems

 Like a tennis team

□ The Process: Agile
□ The product:

 Amazon Web Services
Platform – Have an array
of services created and
managed individually

 Raytheon
□ The culture

 Large teams – Project based
organization

 Process owns the lifecycle
 Like a cricket team

□ The Process: Well defined,
Waterfall

□ The product:
 Coyote UAS (Small,

expendable, unmanned
aircraft system) created and
managed as a single system

30

 Slides prepared by Prof Onur Demirors
 Dr. Helen Paik’s COMP 9322 Course handouts
 Richardson and Amundsen, RESTful Web APIs, O'Reilly,

2013
 www.programmableweb.com
 Richardson and Ruby, RESTful Web Services by, O'Reilly,

2007 (http://oreilly.com/catalog/9780596529260)

References

http://www.programmableweb.com/

	SENG3011 Implementation Workshop�
	Outline
	The Concept of Programmable Web
	Web Services
	Web API
	Market Impact
	Representational State Transfer (REST)
	What is a Resource
	Representational State Transfer?
	Resource Oriented Architectures
	ROA Properties
	Synchronous
	Asynchronous
	Request/Response Collaboration
	Event based collaboration
	Processes That Spans Across Services
	Orchestration
	Choreography
	Reactive Systems
	Sequential vs Asynchronous Execution
	Synch Blocking vs Asynch Nonblocking
	Separation of Stateful from Stateless
	Scaling up
	Rethinking Persistence
	Journals vs Databases
	Event Logging
	Other Useful Design Patterns
	Organizations and Microservices
	Comparing Amazon and Raytheon
	References

