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Outline 

 Programmable Web 
 Resource Oriented Architecture 
□ REST (video https://www.youtube.com/watch?v=7YcW25PHnAA) 
□ ROA Properties 
□ Service interactions 
□ Service design issues 
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 The Programmable Web use the same technologies and 
communication protocols of the WWW 

 Difference: 
□ The data is not delivered necessarily for human consumption 
□ A client can be implemented using any programming language 

 Technologies 
□ Services and APIs 
□ Transport protocol: Hyper Text Transfer Protocol (HTTP) 
□ Clients: Browser, Java, Web API, … 
□ Data serialization languages 

The Concept of Programmable Web 



4 

 ‘logical units with clearly defined interfaces(API):’ 
□ What functionality they perform 
□ Which data formats they accept and produce 

 They are application independent 
 Services can be used by other services and applications 
 Web services are not prepared to human consumption (in 

contrast to websites). 
□ Web services require an architectural style to provide  clear 

and unambiguous interaction (clearly defined interfaces). 

 

Web Services 
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 Application Programming Interfaces 
□ A good analogy is the electricity wall socket 

 Endpoints addressable over the Web are 
called Web APIs.  

 How the service is exposed: 
 Protocol semantics 
 Application semantics 

 We frequently use Web API instead of 
Web services but they are not the same 

 We will be focusing on the RESTfull Web 
API 

Web API 

- Service: Electricity 
- Conforms to specs: 
220V, 60Hz … 
- Fitting patterns are 

defined 
- Through the standard 

interface all 
connecting 
equipment 
(consumers) work 

- A layer of abstraction  
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 Making functionality available over the web changed the way 
software functionality delivered. 

 If you needed a CRM functionality in 1990s you had to invest in 
hardware, software, the CRM experts, training … 

 Today’s CRM providers like Salesforce use cloud to deliver the 
functionality. 
□ Multi-tennacy – sharing common infrastructure among customers. 

□ Using web browsers was the norm to access this functionality 

□ Today customers are granted API level access 
 Non salesforce applications can easily use the services. 

 Thousands of companies are changing their strategies toward 
delivering functionality through Web APIs: 
□ https://www.programmableweb.com/apis/directory  is a good source 

 

Market Impact 

https://www.programmableweb.com/apis/directory
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 A way of providing interoperability between computer systems on 
the Internet. 
□ REST-compliant Web services allow requesting systems to access and 

manipulate textual representations of Web resources using a uniform and 
predefined set of stateless operations.  

 An architectural style of building networked systems 
□ a “design guideline” for building a system (or a service in our context) on the 

Web 

□ defines a set of architectural constraints in a protocol  

 REST is built on standards:  
□ HTTP, URL, XML/HTML/JPEG/ … (resource representations) 
□ text/xml, text/html, image/gif, image/jpeg, … (MIME Types)  

 REST itself is not an official standard specification 

Representational State Transfer (REST) 
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 A thing that users want to create a link to, retrieve, 
annotate, or perform other operations on. 

 A resource: 
□ is unique (i.e., can be identied uniquely) 
□ has at least one representation, 
□ has one or more attributes beyond ID 
□ has a potential schema, or definition 
□ can provide context 
□ is reachable within the addressable universe 

 collections, relationships (structural, semantic) 

What is a Resource 
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 Web is comprised of resources 
 UNSW can define SENG3011 as a resource  
□ Students can access this resource through a URL: 
□ http://www.unsw.edu.au/course/SENG3011 

 Representation is returned SENG3011.html – 
□ The representation place client application in a state  
□ Client can access another resource in COMP3392.html 
□ The new representation places client in another state  

 The client application transfer states with each resource 
representation. 

Representational State Transfer? 
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 ROA: 
□ Architecture for creating Web APIs that conforms to the REST 

design principles 
□ Base technologies: URLs, HTTP and Hypermedia 

 Web Services with a ROA architecture are called 
RESTful Web Services (Restfull Web APIs) 

 HTTP requests are used to manipulate the state of a 
resource 
URI: Identifies the resource to manipulate 
  http://www.unsw.edu.au/course/SENG3011 
HTTP method: The action to be performed to manipulate the resource 

 
 

 

Resource Oriented Architectures 
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  Addressability 
  Uniform interface 
  Statelessness 
  Connectedness 

 

ROA Properties 
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 More suitable: 
□ where real-time interaction with minimal delays is needed,  
□ where subsequent actions are dependent on the response 

received for the previous message transferred, 
□ further actions need to be performed in sequential manner. 

 Example: 
□ ATM machine need to interact with the back-end system to 

check the available balance.  

Synchronous 
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 More suitable: 
□ where systems have long running jobs and there is no need 

of real-time responses.  
□ when you need low latency – blocking a call may slow the 

system 

 Example: 
□ An ERP system needs to publish some information so that any 

interested parties can subscribe to that and get the updates. 

Asynchronous 
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Request/Response Collaboration 

 Well aligned with 
synchronous 
communication 

 For asynchronous 
applications adaptation 
is required: 
□ Start the operation 
□ Register a call back  

 ask server to notify when 
the operation complete 

1-Customer orders an item 
2-Payment is processed 
3-The system check the availability and 
the need for reorder 
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Event based collaboration 

  Process announce what 
happened 

 Other services decides 
what to do 

 Business logic is 
distributed 

 Highly decoupled – can 
add new services easily. 
 

- The UI Service raises Order-Requested event 
- Orders Service and the Stock Service react to the 

raised event. 
- Order service raise Order-Confirmed event 
- UI Service reacts to Order-Confirmed 
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Processes That Spans Across Services 
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Orchestration 

□ Create a central control 
mechanism within: 
CustomerService 

□ Once the process initiated 
CustomerService send 
request to other services. 

□ We can model into code or 
use BPM software. 

□ - Tightly coupled  
□ - High cost to change 
□ + Can monitor the status of 

the process. 
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Choreography 

 Customer Service 
created the event. 

 All services subscribe to 
this event react to it. 

 + Loosely coupled 
 + Easy to change 
 - Additional work is 

needed to monitor the 
status of the process. 
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Reactive Systems 

 Systems that are* : 
□ Responsive,  
□ Resilient,  
□ Elastic and  
□ Message Driven 

 Asynchronous, nonblocking 
message-passing that 
establish a boundary 
between components… 

 that ensures loose 
coupling, isolation and 
location transparency. * 
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Sequential vs Asynchronous Execution 
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Synch Blocking vs Asynch Nonblocking 
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 Stateless: 
□ Deals with behavior, pure business logic 
□ Sending an email   
□ Displaying the fuel consumption for the moment 
□ HTTP protocol 

 Stateful:  
□ Deals with keeping records of things 
□ Expecting an acknowledgement for the email sent  
□ Displaying the average fuel consumption for a period. 
□ FTP protocol 

Separation of Stateful from Stateless 
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 Decoupling behaviour from state enable us to scale up 
the stateless processes. 

 Scaling up stateless processes is easy. 
□ You can run KM to Miles Conversion on multiple nodes easily 
□ Various platforms exists: AWS Lamda is a popular exaple 

 Scaling up the stateful part is difficult  
□ The aggregate is the only strongly consistent truth 
□ Single active instance can run at a time 
□ Usually scaled up by using active/passive availability 

clusters 
 (Establishing fully redundant instances of nodes, brought online 

when its associated primary node fails) 

Scaling up 



24 

 Before Databases, Accountants used to keep all the 
transactions that accured: in journals and ledgers. 

 Sample: Transactions and a corresponding Journal  
 

Rethinking Persistence  

Date Transaction  
 
 
Jan 2 An amount of $36,000 was paid 
as  advance rent for three months. 
Jan 3 Paid $60,000 cash on the 
purchase  of equipment costing 
$80,000. The  remaining amount was 
recognized  as a one year note 
payable.  
Jan 4 Purchased office supplies 
costing  $17,600 on account.  
Jan 13 Provided services to its 
customers  and received $28,500 
in cash.  

 
 

Date Account  Debit
 Credit  
Jan 1 Cash  100,000    
  Common Stock   100,000  
Jan 2 Prepaid Rent 36,000    
  Cash   36,000  
Jan 3 Equipment  80,000
    
  Cash   60,000  
  Notes Payable   20,000  
Jan 4 Office Supplies 17,600    
  Accounts Payable  
 17,600  
Jan 13 Cash  28,500    
  Service Revenue   28,500  
J  13 A t  P bl  17 600
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Journals vs Databases 

 Journal 
□ Show the complete history 

of the transactions 
□ One never alter the journal 

 If an error is made it is 
compensated by a new entry 
into the journal 

□ There is no concept of 
update-in-place 
(overwriting existing record 
with new data) 

 Database  
□ Show the current state of 

the data. 
 Diskspace was very 

expensive to depict all the 
history 

□ SQL databeses use CRUD 
to eliminates redundancy 
by only depicting the 
current state of the data 
 

 
What if we don’t have the diskspace constraint? 
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 Events are stored in the order that they are created 
□ It is a database of everything that has happened in the system. 

 Time is a natural index  
□ You can reverse back for any purpose 
□ Debugging, Auditing … 

 Event Sourcing – A pattern for event logging.  
□ State change is captured as a new event to be stored in event 

log. 
 OrderCreated, PaymentAuthorized, EmailSent … 

□ The aggregate can cache the dataset in memory (the latest state) 
□ Event sourced aggregates use ‘Event Streams’ to publish events to 

other services. 

Event Logging 
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 Back Pressure 
□ A pattern for flow control 
□ When we have fast producer and slow consumer 
□ Consumer manages the flow by signaling producers  

 Circuit Braker 
□ A Finite State Machine – Closed/Open/Half-Open 
□ The default state is Closed  
□ When a failure detected it moves to Open State 
□ When Open, it does not let any request to go through 
□ After time-out, it moves to Half-Open state 
□ In Half-Open, if the next request fails it goes to Open otherwise 

goes to Closed. 

Other Useful Design Patterns 
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 Microservices are services modeled after a business 
domain 

 Conwey’s Principle: 
□ Any organization that designs a system (defined more broadly 

here than just information systems) will inevitably produce a 
design whose structure is a copy of the organization’s 
communication structure 

 Information Systems Department of an Army: 
□ How will the communication structure shape? 

 Command and control 

□ Who will be the project manager? 
 The highest ranking officer 

 A startup ? Will you give the same answers? 
 

Organizations and Microservices 
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Comparing Amazon and Raytheon 

 Amazon 
□ The culture: 

 Small teams – two pizza 
teams 

 Teams owns the whole 
lifecyce of the systems 

 Like a tennis team 

□ The Process: Agile 
□ The product: 

 Amazon Web Services 
Platform – Have an array 
of services created and 
managed individually 

 Raytheon 
□ The culture 

 Large teams – Project based 
organization 

 Process owns the lifecycle 
 Like a cricket team  

□ The Process: Well defined, 
Waterfall 

□ The product: 
 Coyote UAS (Small, 

expendable, unmanned 
aircraft system) created and 
managed as a single system 
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 Slides prepared by Prof Onur Demirors 
 Dr. Helen Paik’s COMP 9322 Course handouts 
 Richardson and Amundsen, RESTful Web APIs, O'Reilly, 

2013 
 www.programmableweb.com 
 Richardson and Ruby, RESTful Web Services by, O'Reilly, 

2007 (http://oreilly.com/catalog/9780596529260) 
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