COMP1511 - Programming
Fundamentals

— Term 1, 2019 - Lecture 5 S
Stream B

What did we learn last week?

if statements - branching code

Problem solving - thinking before coding

Code Style - readability and prevention of errors
While loops - repeating code

What are we covering today?

Code Review

e Whatis a Code Review?
e What can we learn from Code Reviews?

While Loops

e Some recap of the syntax and what they do
e Another example of a while loop (combining with if statements)

Code Review

What is a code review?

e Having other coders look over your code
e Having an active discussion about the code

e Auto-testing can test functionality, but not necessarily usability
e Humans can help you improve as a human!

e Similar to proof-reading a document
e Super valuable to discuss different approaches to the same problem

Why do we review code?

As the code writer

e Getfeedback on how easy itis to understand our code
e Hear about other people’s ideas on solving the same problem

As the code reviewer

e Getto see how someone else writes code
e Learn more about different ways to solve problems

Different ways to review code

Pair Programming

e Lab partners actively discussing solutions
e Live reviewing and discussion while in development

More formal review

e Finish a program, then ask people to review it
e Sometimes in person, sometimes using software tools

How to do Pair Programming well

Also, how to learn the most from 1511 labs

e One person on the keyboard
o Thinking about how to structure the C and syntax

e One person over the shoulder
o Thinking about how to solve the problem

e Active discussion between the two of you as you go
e This means the code is constantly under review

Programming with others is one of the best ways to learn!

Conducting a Code Review

Reviewing a finished piece of code

e Reviewers will read the code and help with it
e Remember, we're judging the code, not the coder!
e We're all learning ... this is not about picking at mistakes

Points to Discuss

e Where is it easy or hard to understand the code?
e What are the different possible ways the code can solve the problem?
e Any little issues we can help solve?

What not to do in a Code Review

These things will not help us learn better code:

e “You did this wrong”
e "Your code is bad”
e "“Here are all the mistakes in this code”

We're doing this to help ourselves and others learn more!

No judgement, only help!

What to do in a Code Review

How does one help someone else learn?

e Understand that it's very hard to put your work up for review
e We're not here to judge the code’s standard
e We're here to help everyone learn more

e There is no single right way to solve a problem
e If your way and someone else’s way are different, you can both be right
e Tryto learn from other styles of coding that you review

e Letting people know what you don't understand is one of the most
valuable things you can do in a code review

Let’s do a mini Code Review

Here's some code for us to review

e A small program from last week’s tutorial
e CodeReview.c
e Let's have alook at it and see what we think. ..

What would we think about first?

Is it understandable?

e What don't you understand about this code?
e What questions do you need to ask to get a grasp on what's going on?

Can we help?

e (Can we suggest any ways to change things to be more understandable?
e What would easily answer the questions above?

Some possibilities

e What's the overall purpose of the code?

e There's a big set of if statements, what is the problem that is being solved
by that set of code?

e There's some interesting bracketing happening. Is that a different style
from what I'm used to?

e What's the purpose of the “return 0” we're seeing in the if statements?

e That last printf...is that always going to run?

Deeper Analysis

Problem Solving in the code

e Has the code definitely solved all the problems expected of it?
e |Isthe code solving problems the same way you would have?
e Arethere any consequences of the different ways this can be done?

Other options

e |sthere other structure that would also solve the code?
e |sthere any way we can make the code easier to understand?
e Do we want to make changes on behalf of the style guide?

Some Possibilities

We think it's solved all the problems (just need to check the spec)

The returns are interesting . . . do they make it more efficient?

Do they make it easier to read and understand?

Do they make the program run more cleanly?

Could we also do this with if/else and would that be easier to read?

Do we think this would be easier with more comments explaining things?
Is there a way to structure that final statement or comment it so that it's
understandable?

Is the lack of return 0 at the end going to cause any problems?

Do we want to reformat the bracketing to fit the class style guide?

Where else can this discussion lead?

We've barely scratched the surface

Different reviewers will give you different perspectives

This process is for both the reviewer and reviewee to learn from

Expose yourself to different coding styles

If you don't understand something, this is the best time to ask (it helps the
reviewee as welll)

Break Time

Let's take five minutes break

e (Code reviews are ways to have human
communication about code

e They expose us to other coding styles

e They lead to interesting discussions into
problem solving

e They're a good way to learn different
approaches

Problems by Parallel Studio

COMP1511 Resources

How to get help in COMP1511

Course Forum is linked from the course webpage
Questions are welcome there and will help other students

Course Help Sessions

Tuesday, Wednesday, Thursday 6-8pm, Bugle and Horn Labs
Friday 3-5pm, Viola and Cello Labs

You can go to these and ask about ANYTHING in the course

Weekly Tests

Self Invigilated Weekly Tests start this week

e A mini exam you run yourself
e The detailed rules are in the test itself
e Releases on Wednesday and you will have one week to complete it

e Use it as a way to test your progress so far
e Great practice for the time pressure and limited resources in the exam

While Loops Continued

What do we know about While Loops?

They have a specific syntax

They test an expression and run repeatedly while it's true
We can make them stop after a specific number of iterations
We can make them stop after a certain condition is met

We can run any other code inside a while loop

Will it ever stop? | don’t know ...

It's easy to make it start, but make sure you can stop it!

e C(Create every loop with the idea of how it stops
e Let's review how we stop loops

While Loop with a Loop Counter

How to make a loop run an exact number of times

// an integer outside the loop
int counter = 0;

while (counter < 10) {
// Code in here will run 10 times

counter = counter + 1;

}
// When counter hits 10 and the loop’s test fails

// the program will exit the loop

Using a Sentinel Variable with While Loops

A sentinel is a variable we use to intentionally exit a while loop

// an integer outside the loop
int endLoop = 0;
int inputNumber;

// The loop will exit if it reads an odd number
while (endLoop == 0) {
scanf (“"%$d”, &inputNumber) ;
if (inputNumber % 2 == 0) {
printf (“"Number is even.\n”);
} else {
printf (“"Number is odd.\n”);
endLoop = 1;

Let's make another while loop program

| would like some programs that can print out lists of numbers
Let’s make a few programs that can do the following:

1. Multiples of 3 between 0 and 1000

2. Multiples of 3 between 0 and any number

3. Multiples of any number between 0 and another number
4, Multiples of any number between any two numbers

Approaching the Problem

If we need multiples of 3 between 0-1000, we're doing a bit of repetitive work
First Approach

e Loop through all numbers between 0 and 1000
e Find which ones are divisible by 3 (hint: use mod!)
e Output them

Divisible by 3

int main (void) {
// an integer outside the loop
int loopCounter = 0;
int finishNumber = 1000;

// Loop from 0-1000, checking for mulitples of 3
while (loopCounter <= finishNumber) {

// output the number if it’s a multiple of 3

if (loopCounter % 3 == 0) {

printf (“%d\n”, loopCounter) ;

}

loopCounter = loopCounter + 1;
}

return O;

Simple Solutions

It's always good to start with something that works

e Thisis a simple solution that will get us our results
e Where's the wasted effort? Can you see it?

Simple Solutions are a good start

Where's the wasted effort?

e We're looping 1000 times to output 333 numbers
e (Can we do this by only looping 333 times?

Make thing, Make good.
It's a simple philosophy that means:

“Make sure you do something basic that works, then improve it later.”

Upgrading our work

int main (void) {
// an integer outside the loop

int loopCounter = 3; // start with the first multiple of 3
int finishNumber = 1000;

// Loop from 0-1000, only using multiples of 3
while (loopCounter <= finishNumber) {
printf (“"%d\n”, loopCounter) ;
// immediately jump to the next multiple of 3
loopCounter = loopCounter + 3;

}

return 0;

Now with User Input

Using variables input by the user

e We can take a number for the maximum value of the range
e We can also take a number for our “divisor” number

Multiples with User Input

int main (void) {
int divisor; // remember the divisor
int loopCounter;
int finishNumber;

// Take the user input numbers

printf (“Please enter the divisor:\n”);

scanf (“%d”, &divisor);

printf (“Please enter the highest possible value:\n”);
scanf (“"%d”, &finishNumber) ;

// Then loop . . . on the next slide

Multiples with User Input Continued

// Get the loop ready by setting up the starting number
loopCounter = divisor;

// Loop from loopCounter to finishNumber,

// printing multiples of divisor

while (loopCounter <= finishNumber) {
printf (“%d\n”, loopCounter) ;
// immediately jump to the next multiple of divisor
loopCounter = loopCounter + divisor;

}

return 0;

Code Review

What kind of questions might we ask?

Does this code make sense?

Does it explain itself by how it was written?

s this the only way to solve this problem? Is there another approach?
Is this code solving the problem completely?

Can we step it up a notch?

What if our starting value isn't 0?

e What if our user gives us a lowest and highest value?
e How do we know what to start our loopCounter on?

Options (you can explore these yourself)

e We could return to the “brute force” method of checking all numbers
e We could use some hybrid approach ... brute force until the first
multiple, then use our optimised loopCounter

What did we learn today?

Code Reviews

e Reviewing your’s and other people’s code can be very valuable
e Reviewing helps you understand more code
e Being reviewed helps your code be presentable for humans

More Looping

e Start simple, basic problem solving
e Then expand to more interesting things

e Loops don'tjust have to bein 1s, sometimes they can jump using larger
numbers

