
COMP1511 - Programming
Fundamentals
Term 1, 2019 - Lecture 5

Stream B

What did we learn last week?
● if statements - branching code
● Problem solving - thinking before coding
● Code Style - readability and prevention of errors
● While loops - repeating code

What are we covering today?
Code Review

● What is a Code Review?
● What can we learn from Code Reviews?

While Loops

● Some recap of the syntax and what they do
● Another example of a while loop (combining with if statements)

Code Review
What is a code review?

● Having other coders look over your code
● Having an active discussion about the code

● Auto-testing can test functionality, but not necessarily usability
● Humans can help you improve as a human!

● Similar to proof-reading a document
● Super valuable to discuss different approaches to the same problem

Why do we review code?
As the code writer

● Get feedback on how easy it is to understand our code
● Hear about other people’s ideas on solving the same problem

As the code reviewer

● Get to see how someone else writes code
● Learn more about different ways to solve problems

Different ways to review code
Pair Programming

● Lab partners actively discussing solutions
● Live reviewing and discussion while in development

More formal review

● Finish a program, then ask people to review it
● Sometimes in person, sometimes using software tools

How to do Pair Programming well
Also, how to learn the most from 1511 labs

● One person on the keyboard
○ Thinking about how to structure the C and syntax

● One person over the shoulder
○ Thinking about how to solve the problem

● Active discussion between the two of you as you go
● This means the code is constantly under review

Programming with others is one of the best ways to learn!

Conducting a Code Review
Reviewing a finished piece of code

● Reviewers will read the code and help with it
● Remember, we’re judging the code, not the coder!
● We’re all learning . . . this is not about picking at mistakes

Points to Discuss

● Where is it easy or hard to understand the code?
● What are the different possible ways the code can solve the problem?
● Any little issues we can help solve?

What not to do in a Code Review
These things will not help us learn better code:

● “You did this wrong”
● “Your code is bad”
● “Here are all the mistakes in this code”

We’re doing this to help ourselves and others learn more!

No judgement, only help!

What to do in a Code Review
How does one help someone else learn?

● Understand that it’s very hard to put your work up for review
● We’re not here to judge the code’s standard
● We’re here to help everyone learn more

● There is no single right way to solve a problem
● If your way and someone else’s way are different, you can both be right
● Try to learn from other styles of coding that you review

● Letting people know what you don’t understand is one of the most
valuable things you can do in a code review

Let’s do a mini Code Review
Here’s some code for us to review

● A small program from last week’s tutorial
● CodeReview.c
● Let’s have a look at it and see what we think . . .

What would we think about first?
Is it understandable?

● What don’t you understand about this code?
● What questions do you need to ask to get a grasp on what’s going on?

Can we help?

● Can we suggest any ways to change things to be more understandable?
● What would easily answer the questions above?

Some possibilities
● What’s the overall purpose of the code?
● There’s a big set of if statements, what is the problem that is being solved

by that set of code?
● There’s some interesting bracketing happening. Is that a different style

from what I’m used to?
● What’s the purpose of the “return 0” we’re seeing in the if statements?
● That last printf . . . is that always going to run?

Deeper Analysis
Problem Solving in the code

● Has the code definitely solved all the problems expected of it?
● Is the code solving problems the same way you would have?
● Are there any consequences of the different ways this can be done?

Other options

● Is there other structure that would also solve the code?
● Is there any way we can make the code easier to understand?
● Do we want to make changes on behalf of the style guide?

Some Possibilities
● We think it’s solved all the problems (just need to check the spec)
● The returns are interesting . . . do they make it more efficient?
● Do they make it easier to read and understand?
● Do they make the program run more cleanly?
● Could we also do this with if/else and would that be easier to read?
● Do we think this would be easier with more comments explaining things?
● Is there a way to structure that final statement or comment it so that it’s

understandable?
● Is the lack of return 0 at the end going to cause any problems?
● Do we want to reformat the bracketing to fit the class style guide?

Where else can this discussion lead?
We’ve barely scratched the surface

● Different reviewers will give you different perspectives
● This process is for both the reviewer and reviewee to learn from
● Expose yourself to different coding styles
● If you don’t understand something, this is the best time to ask (it helps the

reviewee as well!)

Break Time
Let’s take five minutes break

● Code reviews are ways to have human
communication about code

● They expose us to other coding styles
● They lead to interesting discussions into

problem solving
● They’re a good way to learn different

approaches

Problems by Parallel Studio

COMP1511 Resources
How to get help in COMP1511

● Course Forum is linked from the course webpage
● Questions are welcome there and will help other students

● Course Help Sessions
● Tuesday, Wednesday, Thursday 6-8pm, Bugle and Horn Labs
● Friday 3-5pm, Viola and Cello Labs
● You can go to these and ask about ANYTHING in the course

Weekly Tests
Self Invigilated Weekly Tests start this week

● A mini exam you run yourself
● The detailed rules are in the test itself
● Releases on Wednesday and you will have one week to complete it

● Use it as a way to test your progress so far
● Great practice for the time pressure and limited resources in the exam

While Loops Continued
What do we know about While Loops?

● They have a specific syntax
● They test an expression and run repeatedly while it’s true
● We can make them stop after a specific number of iterations
● We can make them stop after a certain condition is met
● We can run any other code inside a while loop

Will it ever stop? I don’t know . . .
It’s easy to make it start, but make sure you can stop it!

● Create every loop with the idea of how it stops
● Let’s review how we stop loops

While Loop with a Loop Counter

// an integer outside the loop
int counter = 0;

while (counter < 10) {
 // Code in here will run 10 times

 counter = counter + 1;
}
// When counter hits 10 and the loop’s test fails
// the program will exit the loop

How to make a loop run an exact number of times

Using a Sentinel Variable with While Loops
A sentinel is a variable we use to intentionally exit a while loop

// an integer outside the loop
int endLoop = 0;
int inputNumber;

// The loop will exit if it reads an odd number
while (endLoop == 0) {
 scanf(“%d”, &inputNumber);
 if (inputNumber % 2 == 0) {
 printf(“Number is even.\n”);
 } else {
 printf(“Number is odd.\n”);
 endLoop = 1;
 }
}

Let’s make another while loop program
I would like some programs that can print out lists of numbers

Let’s make a few programs that can do the following:

1. Multiples of 3 between 0 and 1000
2. Multiples of 3 between 0 and any number
3. Multiples of any number between 0 and another number
4. Multiples of any number between any two numbers

Approaching the Problem
If we need multiples of 3 between 0-1000, we’re doing a bit of repetitive work

First Approach

● Loop through all numbers between 0 and 1000
● Find which ones are divisible by 3 (hint: use mod!)
● Output them

Divisible by 3
int main (void) {
 // an integer outside the loop
 int loopCounter = 0;
 int finishNumber = 1000;

 // Loop from 0-1000, checking for mulitples of 3
 while (loopCounter <= finishNumber) {
 // output the number if it’s a multiple of 3
 if (loopCounter % 3 == 0) {
 printf(“%d\n”, loopCounter);
 }
 loopCounter = loopCounter + 1;
 }
 return 0;
}

Simple Solutions
It’s always good to start with something that works

● This is a simple solution that will get us our results
● Where’s the wasted effort? Can you see it?

Simple Solutions are a good start
Where’s the wasted effort?

● We’re looping 1000 times to output 333 numbers
● Can we do this by only looping 333 times?

Make thing, Make good.

It’s a simple philosophy that means:

“Make sure you do something basic that works, then improve it later.”

Upgrading our work
int main (void) {
 // an integer outside the loop
 int loopCounter = 3; // start with the first multiple of 3
 int finishNumber = 1000;

 // Loop from 0-1000, only using multiples of 3
 while (loopCounter <= finishNumber) {
 printf(“%d\n”, loopCounter);
 // immediately jump to the next multiple of 3
 loopCounter = loopCounter + 3;
 }
 return 0;
}

Now with User Input
Using variables input by the user

● We can take a number for the maximum value of the range
● We can also take a number for our “divisor” number

Multiples with User Input

int main (void) {
 int divisor; // remember the divisor
 int loopCounter;
 int finishNumber;

 // Take the user input numbers
 printf(“Please enter the divisor:\n”);
 scanf(“%d”, &divisor);
 printf(“Please enter the highest possible value:\n”);
 scanf(“%d”, &finishNumber);

 // Then loop . . . on the next slide

Multiples with User Input Continued

 // Get the loop ready by setting up the starting number
 loopCounter = divisor;

 // Loop from loopCounter to finishNumber,
 // printing multiples of divisor
 while (loopCounter <= finishNumber) {
 printf(“%d\n”, loopCounter);
 // immediately jump to the next multiple of divisor
 loopCounter = loopCounter + divisor;
 }
 return 0;
}

Code Review
What kind of questions might we ask?

● Does this code make sense?
● Does it explain itself by how it was written?
● Is this the only way to solve this problem? Is there another approach?
● Is this code solving the problem completely?

Can we step it up a notch?
What if our starting value isn’t 0?

● What if our user gives us a lowest and highest value?
● How do we know what to start our loopCounter on?

Options (you can explore these yourself)

● We could return to the “brute force” method of checking all numbers
● We could use some hybrid approach . . . brute force until the first

multiple, then use our optimised loopCounter

What did we learn today?
Code Reviews

● Reviewing your’s and other people’s code can be very valuable
● Reviewing helps you understand more code
● Being reviewed helps your code be presentable for humans

More Looping

● Start simple, basic problem solving
● Then expand to more interesting things
● Loops don’t just have to be in 1s, sometimes they can jump using larger

numbers

