COMP4418: Knowledge Representation and Reasoning—Solutions to Exercise 1 Propositional Logic

1. (i) $(\neg Ja \land \neg Jo) \to T$

Where: Ja: Jane is in town Jo: John is in town T: we will play tennis

- (ii) $R \lor \neg R$ Where: R: *it will rain today*
- (iii) $\neg S \rightarrow \neg P$
 - Where:
 - S: you study
 - P: you will pass this course
- (iv) $D \to (B \lor S)$
 - Where:
 - D: I ate dinner
 - B: I drink bubble tea
 - S: I drink soft drink
- (v) $(V \land D) \to (R \land \neg F)$

Where:

- V: 80% of adults are fully vaccinated
- D: COVID-19 cases begin to drop
- R: lockdown restrictions are eased
- $F{:}\ international\ flights\ immediately\ resume$
- 2. (i) $P \to Q$
 - $\neg P \lor Q \text{ (remove } \rightarrow)$
 - (ii) $(P \to \neg Q) \to R$ $\neg(\neg P \lor \neg Q) \lor R$ (remove \to) $(\neg \neg P \land \neg \neg Q) \lor R$ (De Morgan) $(P \land Q) \lor R$ (Double Negation) $(P \lor R) \land (Q \lor R)$ (Distribute \lor over \land)
 - $\begin{array}{ll} (\mathrm{iii}) & \neg (P \land \neg Q) \to (\neg R \lor \neg Q) \\ & \neg \neg (P \land \neg Q) \lor (\neg R \lor \neg Q) \text{ (remove } \to) \\ & (P \land \neg Q) \lor (\neg R \lor \neg Q) \text{ (Double Negation)} \\ & (P \lor \neg R \lor \neg Q) \land (\neg Q \lor \neg R \lor \neg Q) \text{ (Distribute } \lor \text{ over } \land) \\ & \text{This can be further simplified to: } ((P \lor \neg R \lor \neg Q) \land (\neg Q \lor \neg R) \\ & \text{And in fact this cab be simplified to } \neg Q \lor \neg R \text{ since } (\neg Q \lor \neg R) \vdash \\ & (P \lor \neg R \lor \neg Q) \end{array}$

(iv)
$$(\neg P \to Q) \to (Q \to \neg R)$$

 $\neg (\neg P \to Q) \lor (Q \to \neg R)$ (remove \to)

$$\neg (P \lor Q) \lor (\neg Q \lor \neg R) \text{ (remove } \rightarrow)$$
$$(\neg P \land \neg Q) \lor (\neg Q \lor \neg R) \text{ (De Morgan)}$$
$$(\neg P \lor \neg Q \lor \neg R) \land (\neg Q \lor \neg R) \text{ (Distribute } \lor \text{ over } \land)$$
$$() \neg (\neg P \lor Q) \lor (\neg R \rightarrow S)$$
$$\neg (\neg P \lor Q) \lor (\neg \neg R \lor S) \text{ (remove } \rightarrow)$$
$$((\neg \neg P \land \neg Q) \lor (\neg \neg R \lor S) \text{ (De Morgan)}$$
$$(P \land \neg Q) \lor (R \lor S) \text{ (Double Negation)}$$
$$(P \lor R \lor S) \land (\neg Q \lor R \lor S) \text{ (Distribute } \lor \text{ over } \land)$$
$$\boxed{P Q P \rightarrow Q \neg Q \neg P}$$

Therefore, inference is valid.

	P	Q	$\neg P$	$\neg Q$	$P \to Q$	$\neg Q \rightarrow \neg P$
	T	Τ	F	F	Т	T
(ii)	T	F	F T	T	F	F
	F	T	T	\overline{F}	Т	T
	F	F	T	T	Т	T

In all rows where $P \rightarrow Q$ is true, $\neg Q \rightarrow \neg P$ is also true. Therefore, inference is valid.

	P	Q	R	$P \to Q$	$Q \to R$	$P \rightarrow R$
	T	Τ	T	T	Т	T
	T	T	F	T	F	F
	T	F	T	F	Т	T
(iii)	T	F	F	F	T	F
. ,	F	T	T	T	Т	T
	F	T	F	T	F	T
	F	F	T	T	Т	T
	F	F	F	T	Т	T

In all rows where both $P \to Q$ and $Q \to R$ are true, $P \to R$ is also true. Therefore, inference is valid.

				'			
	P	Q	R	$Q \wedge R$	$P \to Q$	$P \rightarrow R$	$P \to (Q \land R)$
	T	T	T	Т	T	Т	Т
	T	T	F	F	T	F	F
	T	F	T	F	F	T	F
(iv)	T	F	F	F	F	F	F
. ,	F	T	T	T	T	T	Т
	F	T	F	F	T	T	T
	F	F	T	F	T	T	T
	F	F	F	F	T		T

also true. Therefore, inference is valid.

	P	Q	R	$P \wedge Q$	$Q \to R$	$P \to (Q \to R)$	$(P \land Q) \to R$
	T	Т	T	Т	Т	Т	Т
	T	T	F	T	F	F	F
	T	F	T	F	T	Т	Т
(v)	T	F	F	F	T	T	T
. ,	F	T	T	F	T	T	T
	F	T	F	F	F	Т	T
	F	F	T	F	T	Т	T
	F	F	F	F	T	Т	Т

In all rows where $P \to (Q \to R)$ is true, $(P \land Q) \to R$ is also true. Therefore, inference is valid.

4. (i)
$$\operatorname{CNF}(P \to Q)$$

 $\equiv \neg P \lor Q$

 $\operatorname{CNF}(\neg Q)$

$$\equiv \neg Q$$

 $\operatorname{CNF}(\neg \neg P)$

 $\equiv P$ (Double Negation)

 $\begin{array}{ll} \text{Proof:} \\ 1. \quad \neg P \lor Q \quad \text{(Hypothesis)} \end{array}$ (Hypothesis) 2. $\neg Q$ 3. P (Negation of Conclusion) $4. \quad Q$ 1, 3 Resolution 5. 2, 4 Resloution (ii) $\operatorname{CNF}(P \to Q)$ $\equiv \neg P \lor Q$ $\operatorname{CNF}(\neg(\neg Q \to \neg P))$ $\equiv \neg(\neg \neg Q \lor \neg P) \text{ (Remove } \rightarrow)$ $\equiv \neg (Q \lor \neg P)$ (Double Negation) $\equiv \neg Q \land \neg \neg P \text{ (De Morgan)}$ $\equiv \neg Q \land P$ (Double Negation) $\begin{array}{ll} \mbox{Proof:} & & \\ 1. & \neg P \lor Q & (\mbox{Hypothesis}) \\ 2. & \neg Q & (\mbox{Negation of} \end{array}$ (Negation of Conclusion) 3. P (Negation of Conclusion) 4. $\neg P$ 1, 2 Resolution 5. 3, 4 Resolution (iii) $P \to Q, Q \to R \vdash P \to R$ $\operatorname{CNF}(P \to Q)$ $\equiv \neg P \lor Q$ $\operatorname{CNF}(Q \to R)$ $\equiv \neg Q \vee R$

 $CNF(\neg (P \rightarrow R))$ $\equiv \neg(\neg P \lor R) \text{ (Remove } \rightarrow)$ $\equiv \neg \neg P \land \neg R \text{ (De Morgan)}$ $\equiv P \wedge \neg R$ (Double Negation) Proof: 1. $\neg P \lor Q$ (Hypothesis) 2. $\neg Q \vee R$ (Hypothesis) P(Negation of Conclusion) 3. 4. $\neg R$ (Negation of Conclusion) 5. Q1, 3 Resolution $6. \quad R$ 2, 5 Resolution 7. 🗆 4, 6 Resolution (iv) $P \to Q, P \to R \vdash P \to (Q \land R)$ $\operatorname{CNF}(P \to Q)$ $\equiv \neg P \lor Q$ $\operatorname{CNF}(P \to R)$ $\equiv \neg P \lor R$ $\operatorname{CNF}(\neg(P \to (Q \land R)))$ $\equiv \neg(\neg P \lor (Q \land R)) \text{ (Remove } \rightarrow)$ $\equiv \neg \neg P \land \neg (Q \land R) \text{ (De Morgan)}$ $\equiv P \land (\neg Q \lor \neg R)$ (Double Negation, De Morgan) Proof: $\neg P \lor Q$ (Hypothesis) 1. $\neg P \lor R$ 2.(Hypothesis) 3. P(Negation of Conclusion) $\neg Q \lor \neg R$ (Negation of Conclusion) 4. 1, 3 Resolution 5. Q $6. \quad R$ 2, 3 Resolution 7. $\neg R$ 4, 5 Resolution 8. 6, 7 Resolution (v) $P \to (Q \to R) \vdash (P \land Q) \to R$ $\operatorname{CNF}(P \to (Q \to R))$ $\equiv P \to (\neg Q \lor R) \text{ (Remove } \to)$ $\equiv \neg P \lor (\neg Q \lor R) \text{ (Remove } \rightarrow)$ $\equiv \neg P \lor \neg Q \lor R$ $\operatorname{CNF}(\neg((P \land Q) \to R)))$

- $\equiv \neg(\neg(P \land Q) \lor R) \text{ (Remove } \rightarrow)$ $\equiv \neg\neg(P \land Q) \land \neg R \text{ (De Morgan)}$ $\equiv (P \land Q) \land \neg R \text{ (Double Negation)}$
- $\equiv P \land Q \land \neg R$

Proof:

1.	$\neg P \vee \neg Q \vee R$	(Hypothesis)
2.	P	(Negation of Conclusion)
3.	Q	(Negation of Conclusion)
4.	$\neg R$	(Negation of Conclusion)
5.	$\neg Q \lor R$	1, 2 Resolution
6.	R	3, 5 Resolution
7.		4, 6 Resolution

5. (i)
$$((P \lor Q) \land \neg P) \to Q$$

	- /		-		
P	Q	$\neg P$	$P \lor Q$	$(P \lor Q) \land \neg P$	$ ((P \lor Q) \land \neg P) \to Q $
T	T	F	T	F	T
T	F	F	T	F	
F	T	T	T	Т	
F	F	T	F	F	T

Last column is always true no matter what truth assignment to the atoms P and Q. Therefore $((P \lor Q) \land \neg P) \to Q$ is a tautology.

(ii)
$$((P \to Q) \land \neg (P \to R)) \to (P \to Q)$$

/	((())	· (_ · • • • • • • • • • • • • • • • • • •		
Í	P	Q	R	$P \to Q$	$\neg (P \rightarrow R)$	$(P \to Q) \land \neg (P \to R)$	$((P \to Q) \land \neg (P \to R)) \to (P \to Q)$
ĺ	T	T	T	Т	F	F	Т
	T	T	F	T	T	T	T
	T	F	T	F	F	F	T
	T	F	F	F	T	F	T
	F	T	T	T	F	F	T
	F	T	F	T	F	F	Т
	F	F	T	T	F	F	Т
	F	F	F	T	F	F	T

Last column is always true no matter what truth assignment to the atoms P, Q and R. Therefore $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$ is a tautology.

(iii) $\neg(\neg P \land P) \land P$

P	$\neg P$	$\neg P \land P$	$\neg(\neg P \land P)$	$\neg (\neg P \land P) \land P$
T	F	F	Т	Т
F	T	F	Т	F

Last column is not always true. Therefore $\neg(\neg P \land P) \land P$ is not a tautology.

(iv) $(P \lor Q) \to \neg(\neg P \land \neg Q)$

P	Q	$\neg P$	$\neg Q$	$P \lor Q$	$\neg P \land \neg Q$	$\neg(\neg P \land \neg Q)$	$(P \lor Q) \to \neg(\neg P \land \neg Q)$
T	Τ	F	F	Т	F	Т	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	F	T	F	Т

(v)
$$(P \lor Q) \land \neg (P \land Q)$$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	$(P \lor Q) \land \neg (P \land Q)$
T	T	Т	Т	F	F
T	F	T	F	T	T
F	T	T	F	T	T
F	F	F	F	Т	F

Last column is not always true. Therefore $(P \lor Q) \land \neg (P \land Q)$ is not a tautology.

6. (i)
$$\operatorname{CNF}(\neg(((P \lor Q) \land \neg P) \to Q)) \equiv \neg(\neg((P \lor Q) \land \neg P) \lor Q)$$
 (Remove \rightarrow)

 $\overrightarrow{} = \neg \neg ((P \lor Q) \land \neg P) \land \neg Q)$ (DeMorgan) $\equiv (P \lor Q) \land \neg P) \land \neg Q$ (Double Negation)

Proof:

1.	$P \lor Q$	(Negated Conclusion)
2.	$\neg P$	(Negated Conclusion)
3.	$\neg Q$	(Negated Conclusion)
4.	Q	1, 2 Resolution
5.		3, 4 Resolution
11	c	$((D)(O) \land D) \land O)$

Therefore $\neg(((P \lor Q) \land \neg P) \to Q)$ is a tautology.

(ii) $\operatorname{CNF}(\neg(((P \to Q) \land \neg(P \to R)) \to (P \to Q)))$ $\equiv \neg(\neg((\neg P \lor Q) \land \neg(\neg P \lor R)) \lor (\neg P \lor Q))$ (Remove \to) $\equiv \neg\neg((\neg P \lor Q) \land \neg(\neg P \lor R)) \land \neg(\neg P \lor Q)$ (De Morgan) $\equiv (\neg P \lor Q) \land (\neg \neg P \land \neg R) \land (\neg \neg P \land \neg Q)$ (Double Negation and De Morgan) $\equiv (\neg P \lor Q) \land (P \land \neg R) \land (P \land \neg Q)$ (Double Negation) Proof: 1. $\neg P \lor Q$ (Negated Conclusion)

1.	$\neg P \lor Q$	(Negated Conclusion)
2.	P	(Negated Conclusion)
3.	$\neg R$	(Negated Conclusion)
4.	$\neg Q$	(Negated Conclusion)
5.	Q	1, 2 Resolution
6.		4, 5 Resolution

 $(D, \Box) = (D, D) + (D, D) + (D, D)$

Therefore $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$ is a tautology.

(iii) $\operatorname{CNF}(\neg(\neg (\neg P \land P) \land P))$

 $\equiv \neg \neg (\neg P \land P) \lor \neg P \text{ (De Morgan)}$

 $\equiv (\neg P \land P) \lor \neg P \text{ (Double Negation)}$

 $\equiv (\neg P \lor \neg P) \land (P \lor \neg P) \text{ (Distribute \land over \lor)}$

 $\equiv \neg P$ (Can simplify to this by removing repetition and tautologies)

Proof:

1. $\neg P$ (Negated Conclusion)

Cannot obtain empty clause using resolution so $\neg(\neg P \land P) \land P$ is not a tautology.

(iv) $\operatorname{CNF}(\neg((P \lor Q) \to \neg(\neg P \land \neg Q)))$ $\equiv \neg(\neg(P \lor Q) \lor \neg(\neg P \land \neg Q)) \text{ (Remove } \rightarrow)$

 $\equiv \neg \neg (P \lor Q) \land \neg \neg (\neg P \land \neg Q)) \text{ (De Morgan)}$

 $\equiv (P \lor Q) \land (\neg P \land \neg Q))$ (Double Negation)

Proof:

1.	$(P \lor Q)$	(Negated Conclusion)
2.	$\neg Q$	(Negated Conclusion)
3.	$\neg P$	(Negated Conclusion)
4.	Q	1, 2 Resolution
5.		3, 4, Resolution

Therefore $(P \lor Q) \to \neg(\neg P \land \neg Q)$ is a tautology.

(v) $CNF(\neg((P \lor Q) \land \neg(P \land Q)))$

 $\equiv \neg (P \lor Q) \lor \neg \neg (P \land Q) \text{ (De Morgan)}$

 $\equiv \neg (P \lor Q) \lor (P \land Q)$ (Double Negation)

 $\equiv (\neg P \land \neg Q) \lor (P \land Q) \text{ (De Morgan)}$

 $\equiv (\neg P \lor P) \land (\neg P \lor Q) \land (\neg Q \lor P) \land (\neg Q \lor Q)$ (Distribution) $\equiv (\neg P \lor Q) \land (P \lor \neg Q) \text{ (Removal of tautologies)}$

Proof: 1. $(\neg P \lor Q)$ (Negated Conclusion)

2. $(P \lor \neg Q)$ (Negated Conclusion)

Cannot obtain empty clause using resolution so $(P \lor Q) \land \neg (P \land Q)$ is not a tautology.

7. P: I will listen to the album "SOUR" by Olivia Rodrigo Q: I will watch another episode of The Queen's Gambit Truth table:

 $P \lor Q, \neg Q \models \neg P$

P	Q	$P \lor Q$	$\neg Q$	$\neg P$
T	T	Т	F	F
T	F	T	T	F
F	T	T	F	T
F	F	F	T	T

This inference is not valid as $\neg P$ is not always true when $(P \lor Q)$ and $\neg Q$ are both true.

Resolution: $P \lor Q, \neg Q \vdash \neg P$

 $CNF(\neg \neg P)$ $\equiv P$ (Double Negation) Proof:

Proc	ot:	
1.	$P \lor Q$	(Hypothesis)
2.	$\neg Q$	(Hypothesis)
3.	P	(Negated Conclusion)
4.	P	1, 2 Resolution

This inference is not valid as we cannot derive the empty clause using resolution.

8. B: I will drink too much bubble tea

S: I feel sickTruth table:

 $(B \to S) \lor (S \to B)$

B	S	$B \to S$	$S \to B$	$(B \to S) \lor (S \to B)$
T	T	T	T	T
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

Last column is always true. Therefore the statement is a tautology.

Resolution:

 $\vdash (B \to S) \lor (S \to B)$

 $\operatorname{CNF}(\neg((B \to S) \lor (S \to B)))$ $\equiv \neg((\neg B \lor S) \lor (\neg S \lor B)) \text{ (Remove } \rightarrow)$ $\equiv \neg (\neg B \lor S) \land \neg (\neg S \lor B) \text{ (De Morgan)}$ $\equiv (\neg \neg B \land \neg S) \land (\neg \neg S \land \neg B) \text{ (De Morgan)}$ $\equiv (B \land \neg S) \land (S \land \neg B) \text{ (Double Negation)}$

Proof:

1.	$B \wedge \neg S$	(Negated Conclusion)
2.	$S \wedge \neg B$	(Negated Conclusion)
3.		(1, 2 Resolution)

Therefore the sentence is a tautology.