GSOE9210 Engineering Decisions

Problem Set 07

1. Show that an irreflexive and transitive relation is asymmetric.
2. An equivalence relation on a set A is any binary relation which is: a) reflexive; b) symmetric; and c) transitive
Show that for any fixed $m \in \mathbb{N}$, the relation $R_{m} \subseteq \mathbb{Z} \times \mathbb{Z}$ such that $x R_{m} y$ iff $x-y=k m$ for some $k \in \mathbb{Z}$, is an equivalence relation.
Define $[n]_{m}=[n]_{R_{m}}$. Describe the equivalence class $[3]_{0},[3]_{1}$, and $[3]_{2}$, $[3]_{3}$. In general, describe the equivalence classes $[n]_{m}$? Show that $[m]_{4} \subseteq$ $[m]_{2}$, for any $m \in \mathbb{Z}$. More generally, show that if for some $k, n, p \in \mathbb{Z}$, $n=k p$, then $[m]_{n} \subseteq[m]_{p}$
3. Verify that for any finite (or indeed infinite) sets A and B, the relation $A \simeq B$ iff $|A|=|B|$, where $|A|$ is the cardinality of A (i.e., the number of elements in A) is an equivalence relation.
4. A partial order is any relation which is reflexive, antisymmetric, and transitive.
Define the relation $\mid \subseteq \mathbb{N} \times \mathbb{N}$ by $x \mid y$ iff x divides y (or x is a factor of y, or y is a multiple of x). Show that \mid is a partial order (i.e., that it is reflexive, antisymmetric, and transitive).

5 . For a weak preference relation \succsim, verify the following:
(a) If an agent's preferences are consistent then \sim is an equivalence relation
(b) The corresponding strict preference relation \succ is a strict total order
(c) Strict preference satisfies an 'indifference version' of the trichotomy law; i.e., exactly one of the following holds between any $x, y \in A$: $x \succ y$ or $x \sim y$ or $y \succ x$.
6. Verify that the following properties hold from the axiomatisation of \succsim given in lectures.

- Strict preference properties:
- if $x \succ y$, then it should be that $y \succ x$
- if $x \succ y$ and $y \succ z$, then it should not be that $z \succ x$
- Indifference properties:
- if $x \sim y$, then $y \sim x$
- if $x \sim y$ and $y \sim z$, then $x \sim z$
$-x \sim x$ holds for any $x \in A$
- Combined properties:
- if $x \sim y$ and $z \succ x$, then $z \succ y$
- if $x \sim y$ and $x \succ z$, then $y \succ z$
- for any x, y either $x \succ y$ or $x \sim y$ or $y \succ x$

7. Let $[x]$ be an abbreviation for $[x]_{\sim}$, show that:
(a) if $x \sim y$, then $[x]=[y]$
(b) if $[x] \cap[y] \neq \varnothing$, then $[x]=[y]$
(c) if $x \succ y$, then if $a \in[x]$ and $b \in[y]$, then $a \succ b$
8. Left the left-to-right edges in the Hasse diagram below represent \succ.

In terms of \succ what is the relationship between:
(a) d and a
(b) a and e
(c) a and b
(d) f and d
9. Consider the following preferences on the set $A=\{a, b, c, d, e\}$:

$$
c \succsim a \quad b \succsim d \quad e \succsim d \quad d \succsim a \quad d \succsim e \quad a \succsim c
$$

(a) What additional instances of \succsim can be inferred from the axioms given in lectures?
(b) Assume that any inference not present above, or inferred from them, is false. From the definition of \succ in terms of \succsim, what are the instances of \succ ?
(c) For an equivalence relation (A, \sim), denote the set of all equivalence classes of A by A / \sim. (Sometimes A / \sim is called the quotient class of A.) List the indifference classes in A / \sim ?
(d) Draw the Hasse diagram for \succ.
(e) Draw the Hasse diagram for \succ_{I} : the preference relation on indifference classes.
(f) Define an ordinal function V on the members of A / \sim (i.e., V : $A / \sim \rightarrow \mathbb{R})$ and hence, one on $A(v: A \rightarrow \mathbb{R})$.
10. Show that the weak preference ordering \succsim_{I} on indifference classes is antisymmetric.
11. Show that for the weak preference relation \succsim_{I} on indifference classes:
(a) for any $X, Y \in A / \sim, X \succsim_{I} Y$ iff for every $x \in X$ and $y \in Y, x \succsim y$
(b) \succsim_{I} is a weak total order
12. Show that for any ordinal value function v :

- $v(x)>v(y)$ iff $x \succ y$
- $v(x)=v(y)$ iff $x \sim y$.

