GSOE9210 Engineering Decisions

Victor Jauregui
vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Trees

(1) Tree: definitions
(2) Tree properties

Outline

(1) Tree: definitions

Problem representation: decision trees

- a tree is a connected graph with no circuits/cycles
- node connections are called branches
- a unique node may be designated as the tree's root; then we have a rooted tree

Tree definitions

- a path is a sequence of nodes connected by branches
- the first node on a node's path to the root is called the node's parent; all other adjacent nodes are the node's children
- a node with no children is called a leaf node; a
 non-leaf node is called an internal node

Exercises

- Which nodes are the leaves? The internal nodes?
- Which nodes are the parents/children of node v ? D? u ?

Tree definitions

- a node u is an ancestor of node v if u lies on the path from the root to v (excluding v itself)
- the descendants, or successors, of a node v are all the nodes that have v as an ancestor
- The subtree with root v is the tree comprising only v and all its descendants

Exercises

- Which nodes are the ancestors of C? v? u ?
- Which nodes are the descendants of E ? v ? u ?
- Draw the subtrees of with respective roots: v, C, u

Outline

(2) Tree properties

Tree properties

Theorem (Tree characterisation)

A graph is a tree if and only if there is a unique path between any two of its nodes.

Therefore, in a rooted tree:

- there is a unique path from every node to the root
- each node (except the root) has a unique parent, but may have multiple children

Decision trees

In a decision tree:

- each leaf node represents an outcome
- each branch represents either an action or an (chance) event
- internal nodes can be decision nodes (boxes) or chance nodes (circles)

Exercises

- What type of node is u ? v ? B?
- What does the branch labelled D represent?
- What does the branch labelled \bar{o} represent?

