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ASP at a Glance

B ASP = Answer Set Programming
ASP £ Microsoft's Active Server Pages

B ASP belongs to logic programming

Like Prolog: Head < Body or Head : - Body .
Like Prolog: negation as failure
Unlike Prolog: Head may be empty = constraints

B Declarative programming

Unlike Prolog: no procedural control
Order has no impact on semantics

B ASP programs compute models

Unlike Prolog: not query-oriented, no resolution
Unlike Prolog: not Turing-complete
Tool for problems in NP and NPNP
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Motivation for ASP and this Lecture

B Very useful in practice!

Declarative problem solving
Very fast to write

Very fast to run

Few experts

B Interesting case study

Small, simple core language
Great expressivity by reduction to core language

B Knowing the theory is essential
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Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?
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Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?

B Graph Coulouring is NP-complete
» NP: guess solution, verify in polynomial time
» NP-complete: among hardest in NP

B Many applications:
» Mapping (neighbouring countries to different colors)
» Compilers (register allocation)
» Scheduling (e.g., conflicting jobs to different time slots)
» Allocation problems, Sudoku, ...
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Applications of ASP

Automated product configuration

Linux package manager

Decision-support system for space shuttle
Bioinformatics (diagnosis, inconsistency detection)
General game playing

B Several implementations are available

B For this lecture: Clingo www.potassco.org
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

B ASP as modelling language
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Prolog vs ASP
Consider the following logic program:

ma. a.
c+a,b. c:-a,b.

d < a,notb. d:-a,noth.
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Prolog vs ASP

Consider the following logic program:

ma.
c+a,b.
d < a,notb.

a
anb—c
an-b—d
B Prolog proves by SLD resolution:

Proves a (for a is a fact)

Cannot prove b (for b is in no head)
Cannot prove c (for cannot prove b)
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Prolog vs ASP

Consider the following logic program:

ma. a
c+a,b. aAb—c
d <+ a,notb. an-b—d

B Prolog proves by SLD resolution:
Proves a (for a is a fact)
Cannot prove b (for b is in no head)
Cannot prove c (for cannot prove b)
Proves d (for prove a but not b)

Algorithm defines what Prolog does

B What is the semantics of this logic program?
alb|c|d a|lblc|d
TTolo[1] M= a0
M, corresponds to Prolog, what is special about M;?
M; is a stable model a.k.a. answer set:

M, only satisfies justified propositions

Models: M; =

ASP gives semantics to logic programming
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Intuition

The motivating guidelines behind stable model semantics are:
B A stable model satisfies all the rules of a logic program

B The reasoner shall not believe anything they are not forced to
believe — the rationality principle
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Intuition

The motivating guidelines behind stable model semantics are:
B A stable model satisfies all the rules of a logic program

B The reasoner shall not believe anything they are not forced to
believe — the rationality principle

Next: formalisation of this intuition

For now: only ground programs, i.e., no variables
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Syntax

Definition: normal logic program (NLP)

A normal logic program P is a set of (normal) rules of the form
A<+ By, ...,By,notCyq, ...,notCy.

where A, B;, C; are atomic propositions.

When m = n = 0, we omit the “<-" and just write A.
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Syntax

Definition: normal logic program (NLP)

A normal logic program P is a set of (normal) rules of the form
A<+ By, ...,By,notCyq, ...,notCy.

where A, B;, C; are atomic propositions.

When m = n = 0, we omit the “<-" and just write A.

For such a rule r, we define:
®m Head(r) = {A}
B Body(r) = {Bi,...,Bm,notCy,...,notC,}
In code, ris writtenasA :- By, ...,Bp,notCy, ..., not Cy.
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Semantics: Interpretation

Definition: interpretation, satisfaction
An interpretation S is a set of atomic propositions.

S satisfies A <+ By, ...,Bp,notCy, ..., notC, iff
A€S or someB; ¢S or some(C; € S.

In English:
B S satisfies rule iff S satisfies the head or falsifies the body

m S falsifies body iff S falsifies some B; or satisfies some C;j
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Semantics without Negation

Definition: stable model for programs without negation

For P without negated literals:
S is a stable model of P iff
S is a minimal set (w.r.t. C) that satisfies all r € P.
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Semantics without Negation

Definition: stable model for programs without negation

For P without negated literals:
S is a stable model of P iff
S is a minimal set (w.r.t. C) that satisfies all r € P.

Ex:P={a. c«+ab.}

S1 = {a} is a stable model of P
Sy = {a,b} is not a stable model of P
S3 = {a,b,c} is not a stable model of P

Theorem: unique-model property

If P is negation-free (i.e., contains no (not C)), then there is exactly
one stable model, which can be computed in linear time.
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Semantics without Negation - Examples

Compute stable model of a negation-free P by unit propagation:
msS0={}
m St =5y UreP:S satisfies Body(r) Head(r) until $71 =8
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Semantics without Negation - Examples

Compute stable model of a negation-free P by unit propagation:

mSs’={}
u Si+1 = Si U UreP:S satisfies Body(r) Head(r) until Si—H = Si

Ex:.P;={a. b+ a}
S9={} S'={a} S?={a,b} Fixpoint

Ex:Py={a+b. b+ a}
S9={}  Fixpoint

Ex.P3={a+b. b<+a a.}
SO={} S'={a} S?>={a,b} Fixpoint

13730



Semantics with Negation

Definition: reduct

The reduct P of P relative to S is the least set such that
if A<~ By, ...,Bp,notCy, ...,notC, € P and Cy1,...,C, ¢S
then A < By, ...,By € PS.

In English: for each rule r from P,
B if (notC) € Body(r) for some C € S: drop the rule
B else: remove all negated literals and add to PS
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Ss = {b} = P53 ={b}
Ss={ab} = PS={}

Two stable models!

> NN\ %

Ex.. P = {a < nota.}
S1={} = P5 ={a+ neta.}
Sy ={a} = P52 =

15730
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Ex.. P={a < notb. b+« nota.}
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S1=A} = P% ={a. b}
Sy ={a} = P%2={a}

Ss = {b} = P53 ={b}
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Semantics with Negation - Examples

Ex.. P={a < notb. b+« nota.}
S1=A} = P% ={a. b}
Sy ={a} = P%2={a}

Ss = {b} = P53 ={b}
Ss={ab} = PS={}

Two stable models!

> NN\ %
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Sy ={a} = P2={}
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Semantics with Negation - Examples

Ex.. P={a < notb. b+« nota.}

S1=A} = P% ={a. b} X
Sy ={a} = P%2={a} v
Ss = {b} = P53 ={b} v
Sq4={a,b} = P ={} X
Two stable models!

Ex.. P = {a < nota.}

S1= {} = P51 = {a} X
Sy ={a} = P2={} X

No stable model!

15730



Semantics: Overview

Definition: reduct

The reduct P of P relative to S is the least set such that
if A<~ By, ...,Bp,notCy, ..., notC, € P and Cy,...,C, ¢S
then A< By, ...,By € PS.

Definition: stable model

If P contains no (not C):
S is a stable model of P iff
S is a minimal set (w.r.t. C) that satisfies all r € P.

If P contains (not C):
S is a stable model of P iff S is a stable model of PS.

Theorem: necessary satisfaction condition

If S is a stable modeland A € S,
then S satisfies some r € P with A € Head(r).
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Semantics - Examples

Ex.P={a<a. b+« nota.}
S ps Stable model?

Ex.. P={a < notb. b« notc.}
S ps Stable model?

Example on paper
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

B ASP as modelling language
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Integrity Constraints

Definition: integrity constraint

An integrity constraint is a rule r of the form
< By, ...,By,notCy, ..., notCy
S satisfies r iff someB; ¢ S or someC; € S.
PS contains < By, ...,By iff Pcontainsr and Cy,...,Cp ¢ S.

19730



Integrity Constraints

Definition: integrity constraint

An integrity constraint is a rule r of the form
< By, ...,By,notCy, ..., notCy
S satisfies r iff someB; ¢ S or someC; € S.
PS contains < By, ...,By iff Pcontainsr and Cy,...,Cp ¢ S.

Theorem: reduction to normal rules

Let P’ be like P except that every integrity constraint
< By, ...,By,notCy, ..., notC,
is replaced with
dummy < Bi, ...,Bny,notCy, ...,notC,, notdummy
for some new atom dummy.
Then P and P’ have the same stable models.
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Choice Rules

Definition: choice rule

A choice rule is a rule the form
{Al, e ,Ak} < Bi,...,Bp,notCy, ...,notCy
which allows any subset of {A1, ..., A} in a stable model.
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Choice Rules

Definition: choice rule

A choice rule is a rule the form
{Al, e ,Ak} < Bi,...,Bp,notCy, ...,notCy
which allows any subset of {A1, ..., A} in a stable model.

Theorem: reduction to normal rules

A choice rule can be encoded by 2k + 1 normal rules using 2k + 1
new atoms.

Further extensions:
m Conditional literals: {A : B}
Ex.: {m(v,C) : ¢(C)} expands to {m(v,r),m(v,g), m(v,b)}
B Cardinality constraints: min {A1, ... ,Ax} max
Ex.: 1 {m(v,r),m(v,g),m(v,b)} 1
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Negation in the Rule Head

Definition: rules with negated head

A rule with negated head is of the form
notA < Bq, ...,By,notCy, ...,notCy
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Negation in the Rule Head

Definition: rules with negated head

A rule with negated head is of the form
notA < By, ...,By,notCq, ...,notCy

Theorem: reduction to normal rules
Let P’ be like P except that every rule with negated head

notA < By, ...,Bp,notCy, ...,notCy
is replaced with
< Bi, ...,By,notCy, ...,notCy, notdummy

and
dummy < notA
for some new atom dummy.
Then P and P’ have the same stable models (modulo dummy
propositions).
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Complexity

Theorem: complexity of NLPs without negations

Is S a stable model of a negation-free P? - Linear time
Does a negation-free P have a stable model? - Constant (yes, one)

Theorem: complexity of NLPs with negations

Is S a stable model of P? - Linear time
Does P have a stable model? - NP-complete

Note: integrity constraints, choice rules, negation in heads
preserve complexity (program grows only polynomially)
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

B ASP as modelling language
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Programs with Variables

B Atomic propositions may now contain variables, e.g.,
p(X,Z) «e(X,Y),p(Y,Z).
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B Herbrand universe
U contains all constants from P
U contains all f(t1, ..., tx) from Pif f is a k-ary function in P
and U contains ty, ..., tk
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Programs with Variables

B Atomic propositions may now contain variables, e.g.,
p(X,Z) «e(X,Y),p(Y,Z).

B Herbrand universe

U contains all constants from P
U contains all f(t1, ..., tx) from Pif f is a k-ary function in P

and U contains ty, ..., tk

B ASP grounds variables with Herbrand universe
Unlike Prolog: instantiation instead of unification
Caution: the ground program may grow exponentially
Caution: function symbols make grounding Turing-complete
If P is finite and mentions only constants, grounding is finite
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

H ASP as modelling language
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. C(r .Cc
ASP Modelling V(zﬁ, _(g)-v(cg).
(1,2). o1 5"
,3).
((:i’ 14)).. :((;f’ 5, :((217, 64))-.
Typical ASP structure: e((s‘k 1. e(4 ’;))' e(3,5),
e ,3 e ) .
B Problem instance: a set of facts (6, 2)). e((g;) - ¢(5,6).
B Problem class: a set of rules e(65).

Generator rules: often choice rules 1 {m(x, C) :
Test rules: often integrity constraints LR V(X).
TeXy), mex, ¢)

Ideal modeling is uniform: problem class encoding fits all
instances

Semantically equivalent encodings may differ immensely in
performance!

:IH(Y;Cg.
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Example: Non-monotonic Reasoning

Tweety the penguin:
B (Normal) Birds fly.
B Penguins are abnormal.
B Tweety is a bird. So Tweety flies.
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Example: Non-monotonic Reasoning

Tweety the penguin:
B (Normal) Birds fly.
B Penguins are abnormal.
B Tweety is a bird. So Tweety flies.

U {f(X) « b(X),nota(X). a(X) < p(X). b(t).}
= {f(t) < b(t),nota(t). a(t) < p(t). b(t)}
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Example: Non-monotonic Reasoning

Tweety the penguin:
B (Normal) Birds fly.
B Penguins are abnormal.
B Tweety is a bird. So Tweety flies.

= J(t - . t .
S2 = {a(t),b(t),p(t)} = P = {fty+bftyrnetatty: a(t) < p(t).

Tweety flies!
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Example: Non-monotonic Reasoning

Tweety the penguin:
B (Normal) Birds fly.
B Penguins are abnormal.

B Tweety is a bird. Se—Fweety-fies:

B Tweety is a penguin. So Tweety doesn't fly.

—

U= {f(X) « b(X),nota(X). a(X) « p(X).

P = {f(t) « b(t),nota(t). a(t) < p(t). b(t).}

S1=1{b(1).f(t)}

= t .
Sz ={a(t),b(t),p(t)} = P* = {fty+dityrmetatt: a(t) < p(t).

Tweety flies!

S1={b(t),f(0)} =
Sy = {a(t),b(t),p(t)} = (PU {P(t)

Tweety doesn't fly.
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Example: Hamilton Cycle

Definition: Hamilton cycle problem

Input: graph with vertex setV and edges E C V x V.
Is there a cycle that visits every vertex exactly once?

r(X) < p(1,X).

+ notr(X),v(X).

{PX,Y)} + e(X,Y).

rY) <« rX),pX,Y).
«~2{pX,Y)} ,v(X).
«—2{pX,Y)} ,v(Y).
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r(X) < p(1,X).

+ notr(X),v(X).

{PX,Y)} + e(X,Y).

rY) <« rX),pX,Y).
«~2{pX,Y)} ,v(X).
«—2{pX,Y)} ,v(Y).

29/30



Example: N-Queens

Definition: N-queens problem

Place N queens on a N x N chessboard so that they do not attack
each other, i.e., share no row, column, or diagonal.

/

N Wb

Program on paper
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