

COMP4418: Knowledge Representation and Reasoning Horn Logic

Maurice Pagnucco School of Computer Science and Engineering COMP4418, Week 3

Horn clauses

Clauses are used two ways:

- as disjunctions: (rain ∨ sleet)
- as implications: (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause

- positive / definite clause = exactly one +ve literal $[\neg p_1, \neg p_2, \dots, \neg p_n, q]$
- negative clause = no +ve literals $[\neg p_1, \neg p_2, \dots, \neg p_n]$

Note:

```
[\neg p_1, \neg p_2, \dots, \neg p_n, q] is a representation for (\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n \lor q) or [(p_1 \land p_2 \land \dots \land p_n) \to q]
So can read as If p_1 and p_2 and ... and p_n then q and write sometimes as p_1 \land p_2 \land \dots \land p_n \to q
```

Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations (of negative clauses) so that all new derived clauses are negative clauses

Can also change derivations such that each derived clause is a resolvent of the previous derived one (-ve) and some +ve clause in the original set of clauses

- Since each derived clause is negative, one parent must be positive (and so from original set) and one negative
- Continue working backwards until both parents of derived clause are from the original set of clauses
- Eliminate all other clauses not on direct path

SLD Resolution

Recurring pattern in derivations

See previously:

- Example 1
- Example 3
- Arithmetic example

But not:

- Example 2
- 3 block example

An *SLD-derivation* of a clause c from a set of clauses S is a sequence of clause $c_1, c_2, \ldots c_n$ such that $c_n = c$, and

- 1. $c_1 \in S$
- 2. c_{i+1} is a resolvent of c_i and a clause in S

Write: $S \vdash_{SLD} c$

Note: SLD derivation is just a special form of derivation and where we leave out the elements of S (except

 $c_1)$

SLD means S(elected) literals, L(inear) form, D(efinite) clauses

Completeness of SLD

In general, cannot restrict Resolution steps to always use a clause that is in the original set Proof:

```
S = \{ [p,q], [p,\neg q], [\neg p,q], [\neg p,\neg q] \} then S \vdash [].
```

Need to resolve some [/] and $[\neg/]$ to get [].

But S does not contain any unit clauses.

So will need to derive both [/] and $[\neg I]$ and then resolve them together.

But can do so for Horn clauses ...

Theorem: for Horn clauses, $H \vdash []$ iff $H \vdash_{SID} []$

So: H is unsatisfiable iff $H \vdash_{SLD} []$

This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause $c_1, c_2, \dots c_n$ will be negative

So clauses H must always contain at least one negative clause, c_1 .

Example 1 (again)

```
KB:
     FirstGrade
     FirstGrade → Child
     Child \wedge Male \rightarrow Boy
     Kindergarten → Child
     Child ∧ Female → Girl
     Female
Show KB ∪ {¬Girl} unsatisfiable
                                   [-Girl]
                                                                     Girl
                                   [-Child, -Female]
                                                        or
                                                                    Child
                                                                          Female
                                   [—Child]
                                   [¬FirstGrade]
                                                                    FirstGrade
                                                                           paylos
                                                        A goal tree whose nodes are
```

the KB

atoms, whose root is the atom to prove, and whose leaves are in

Prolog

```
Horn clauses form the basis of Prolog Append(nil,y,y) Append(x,y,z) \rightarrow Append(cons(w,x),y,cons(w,z))
```


So goal succeeds with u = cons(a, cons(b, cons(c, nil))) that is: Append([a b],[c],[a b c])

With SLD derivation, can always extract answer from proof $H \vdash \exists x \alpha(x)$ iff for some term $t, H \vdash \alpha(t)$ Different answers can be found by finding other derivations

Back-chaining procedure

Satisfiability of a set of Horn clauses with exactly one negative clause

```
Solve [q_1,q_2,\ldots,q_n]= /* to establish conjunction of q_i */ If n=0 then return YES; /* empty clause detected */ For each d\in KB do If d=[q_1,\neg p_1,\neg p_2,\ldots,\neg p_m] /* match first q */ and /* replace q by -ve lits */ Solve [p_1,p_2,\ldots,p_m,q_2,\ldots,q_n] /* recursively */ then return YES end for; /* can't find a clause to eliminate q */ Return NO
```

Depth-first, left-right, back-chaining

- depth-first because attempt p_i before trying q_i
- left-right because try q_i in order, 1, 2, 3, ...
- back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog

First-order case requires unification etc.

Problems with back-chaining

```
Can go into infinite loop
     tautologous clause: [p, \neg p]
     corresponds to Prolog program with p :- p.
Previous back-chaining algorithm is inefficient
Example:
     consider 2n atoms: p_1, \ldots, p_n, q_1, \ldots, q_n,
     and 4n - 4 clauses:
        (p_i \Rightarrow p_{i+1}), (q_i \Rightarrow q_{i+1}),
        (p_i \Rightarrow q_{i+1}), (q_i \Rightarrow q_{i+1}).
     with goal p_n has execution tree like this:
```

 p_n

 q_{n-1}

 D_{n-2}

 q_{n-2}

 p_{n-2}

 p_{n-1}

 q_{n-2}

search eventually fails after 2ⁿ steps! Is this inherent in Horn clauses?

Forward-chaining

Simple procedure to determine if Horn KB $\vdash q$. main idea: mark atoms as solved

- 1. If q is marked as solved, then return YES
- 2. Is there a $\{p_1, \neg p_2, \dots, \neg p_n\} \in KB$ such that p_2, \dots, p_n are marked as solved, but the positive literal p_1 is not marked as solved?

no: return NO

yes: mark p_1 as solved, and go to 1.

FirstGrade example:

Marks: FirstGrade, Child, Female, Girl then done!

Observe:

- only letters in KB can be marked, so at most a linear number of iterations
- not goal-directed, so not always desirable

A similar procedure with better data structures will run in *linear* time overall

First-order undecidability

Even with just Horn clauses, in the first-order case we still have the possibility of generating an infinite branch of resolvents

```
KB: LessThan(succ(x),y) \rightarrow LessThan(x,y)

Q: LessThan(zero,zero)

As with full Resolution, there is no way to detect when this will happen

So there is no procedure that will test for satisfiability of first-order Horn clauses the question is undecidable

[\negLessThan(0,0)]

\downarrowx/1,y/0

[\negLessThan(2,0)]
```

As with full clauses, the best that can be expected is to give control of the deduction to the *user*To some extent this is what is done in Prolog, but we will see more in "Procedural Control"