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COMP9334
Capacity Planning for Computer Systems 
and Networks

Week 2: Operational Analysis and
Workload Characterisation
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Last lecture

• Modelling of computer systems using Queueing 
Networks
• Open networks
• Closed networks
• Interactive systems 
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Open networks

A transactions may visit the CPU and disk multiple times.
An open network is characterised by external transactions. 

Example: The server has a CPU and a disk. 
Open queueing network

External arrivals

Workload intensity specified by arrival rate

Unbounded number of customers in the system

In equilibrium, flow in = flow out
) throughput = arrival rate

Page 26
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Closed queuing networks

Closed queueing networks model
• Running batch jobs overnight
• Once a job has completed, a new job starts.
Good performance means high throughput.  
#jobs in the system = multi-programming level 

Database server for batch jobs

Running batch jobs overnight

E.g. producing managerial reports

Assume once a job has completed, a new job starts

Maintain constant number of customers in the system

A closed queueing network
Page 25
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Interactive systems

M users Each user sends a job to
the system

The system sends the
results to the user.

The user after a thinking
time, sends another job to
the system.
- Thinking time = time
spent by the user

An interactive system is
an example of closed
system.

results jobs
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This lecture

• The basic performance metrics
• Response time, Throughput, Utilisation etc. 

• Operational analysis
• Fundamental Laws relating the basic performance metrics
• Bottleneck and performance analysis

• Workload characterisation
• Poisson process and its properties
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Operational analysis (OA)

• “Operational”
• Collect performance data during day-to-day operation

• Operation laws
• Applications:

• Use the data for building queueing network models
• Perform bottleneck analysis
• Perform modification analysis
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Single-queue example (1)

In an observational period of T, server busy for time B
A requests arrived, C jobs completed 

A, B and C are basic measurements 

Deductions: Arrival rate λ = A/T
Output rate X = C/T
Utilisation U = B/T
Mean service time per completed job = B/C

server

#requests = A #requests = C

B



Motivating example

• Given
• Observation period = 1 minute
• CPU

• Busy for 36s.
• 1790 transactions arrived
• 1800 transactions completed

• Find
• Mean service time per completion = 36/1800 = 0.02s
• Utilisation = 36/60 = 60%
• Arrival rate = 1790/60 = 29.83 transactions /s
• Output rate = 1800/60 = 30 transactions/s
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Utilisation law

• The operational quantities are inter-related
• Consider 

• Utilisation U = B / T
• Mean service time per completion S = B / C
• Output rate X = C / T

• Utilisation law – Can you relate U, S and X? 
• U = S X 

• Utilisation law is an example of operational law. 
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Application of OA

• Don’t have to measure every operational quantities
• Measure B to deduce U - don’t have to measure U

• Consistency checks
• If U ≠ S X, something is wrong

• Operational laws can be used for performance analysis
• Bottleneck analysis (today)
• Mean value analysis (a few weeks’ time) 
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Equilibrium assumption

• OA makes the assumption that
• C = A 
• Or at least C ≈ A

• This means that 
• The devices and system are in equilibrium

• Arriving rates of jobs = Output rates of jobs = Throughput 
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OA for Queueing Networks (QNs)

The computer
system has K
devices, labelled
as 1,…,K.

The convention
is to add an
additional 
device 0 to
represent the
outside world.
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OA for QNs (cont’d)

• We measure the basic operational quantities for each 
device (or other equivalent quantities) over a time of T
• A(j) = Number of arrivals at device j
• B(j) = Busy time for device j
• C(j) = Number of completed jobs for device j

• In addition, we have
• A(0) = Number of arrivals for the system
• C(0) = Number of completions for the system

• Question: What is the relationship between A(0) and C(0) for a 
closed QNs? 
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Visit ratios

• A job may require multiple visits to the devices in the 
system
• Example: If every job arriving at the system will require 3 visits to 

the disk (= device j), what is the ratio of C(j) to C(0)?

• We expect C(j)/C(0) = 3.

• V(j) = Visit ratio of device j
• = Number of times a job visits device j 

• We have V(j) = C(j) / C(0)
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Forced Flow Law

The forced flow law is

Since 
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Service time versus service demand 

• Ex: A job requires two disk accesses to be completed. One 
disk access takes 20ms and the other takes 30ms. 

• Service time = the amount of processing time required per 
visit to the device 
• The quantities “20ms” and “30ms” are service time.

• D(j) = Service demand of a job at device j is the total service 
time required by that job
• The service demand for this job = 20ms + 30 ms = 50ms
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Service demand

• Service demand can be expressed in two different 
ways
• Ex: A job requires two disk accesses to be completed. One 

disk access takes 20ms and the other takes 30ms.
• D(j) = 50ms. 
• What are V(j) and S(j)?
• V(j) = 2. S(j) = 25ms. 

• Service demand D(j)  = V(j) S(j) 
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Service demand law (1)

• It is U(j)

Given D(j) = V(j) S(j)

Since 

Service demand law

• What is X(j) S(j)? 
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Service demand law (2)

• Service demand law D(j) = U(j) / X(0)
• You can determine service demand without knowing the visit ratio
• Over measurement period T, if you find

• B(j) = Busy time of device j 
• C(0) = Number of requests completed 

• You’ve enough information to find D(j)

• The importance of service demand
• You will see that service demand is a fundamental quantity you 

need to determine the performance of a queueing network
• You will use service demand to determine system bottleneck today
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Server example exercise

Measurement time = 1 hr

# I/O/s Utilisation

Disk 1 32 0.30

Disk 2 36 0.41

Disk 3 50 0.54

CPU 0.35

Total # jobs=13680

What is the service time of Disk 2?
What is the service demand of Disk 2?
What is its visit ratio? 
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Server example solution

Measurement time = 1 hr

# I/O/s Utilisation

Disk 1 32 0.30

Disk 2 36 0.41

Disk 3 50 0.54

CPU 0.35

Total # jobs=13680

Service time = U2/X2 = 0.41/36 = 11.4ms
System throughput = 13680/3600 = 3.8 jobs/s
Service demand = 0.41/3.8 = 108ms
Visit ratio = 36/3.8 = 108 / 11.4 = 9.47
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Little’s law (1)

• Due to J.C. Little in 1961
• A few different forms

• The original form is based on stochastic models
• An important result which is non-trivial

• All the other operational laws are easy to derive, but Little’s 
Law’s derivation is more elaborate.

• Consider a single-server device
• Navg = Average number of jobs in the device

• When we count the number of jobs in a device, we include the 
one being served and those in the queue waiting for service
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Little’s Law (2)

• X = Throughput of the device
• Ravg = Average response time of the jobs
• Little’s Law (for OA) says that

Navg = X * Ravg
We will argue the validity of Little’s Law using a simple 

example. 
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Job index Arrival time Service time Departure time
1 2 2 4
2 6 4 10
3 8 4 14
4 9 3 17
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Consider the single sever queue example from Week 1

Let us use blocks of height 1 to show the time span of the 
jobs, i.e. width of each block = response time of the job
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1 time
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1 
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3

Assuming that in the measurement time interval [0,20] 
these 4 jobs arrive arrive and depart from this device, i.e. the 
device is in equilibrium. 

Total area of the blocks 
= Response time of job 1 + Response time of job 2 + 

Response time of job 3 + Response time of job 4
= Average response time over the measurement interval * 

Number of jobs departing over the measurement interval

This is one interpretation.  Let us look at another. 
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Let us assume these blocks are “plastic” and let them fall   
to the ground. Like this. 

There is an interpretation of the height of the graph. 
S1,2016 COMP9334 27



Job index Arrival time Service time
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3 8 4
4 9 3

2 31 4
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Interpretation: Height of the graph = number of jobs in the device
E.g. Number of jobs in [9,10] = 3
E.g. Number of jobs in [11,12]  = 2 etc.

1 
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time

waiting 
jobs

Job being 
Processed 
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Again, consider the measurement time interval of [0,20].

Area under the graph in [0,20]
= Height of the graph in [0,1] + Height of the graph in [1,2] + …

Height of the graph in [19,20]
= #jobs in [0,1] + #jobs in [1,2] + … + #jobs in [19,20]
= Average number of jobs in [0,20] * 20
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Area = Average number of jobs in [0,T] * T
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Area = Average response time over [0,T] * 
Number of jobs leaving in [0,T]
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Area = Average response time of all jobs * 
Number of jobs leaving in [0,T]            (Interpretation #1)

= Average number of jobs in [0,T] * T     (Interpretation #2)

Since Number of jobs leaving in [0,T] / T 
= Device throughput in [0,T]

We have Little’s Law. 

Average number of jobs in [0,T]
= Average response time of all jobs * Device throughput in [0,T]

Deriving Little’s Law    
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Applicability of Little’s Law

• Little’s Law can be applied at many different levels
• A system with K devices

• Navg(j) = #jobs in device j
• Average number of jobs in the system Navg = Navg(1) + …. + 

Navg(K)
• Average response time of device j = Ravg(j)
• Average response time of the system = Ravg

• Little’s law can be applied to a device
• Navg(j) = Ravg(j) * X(j)

• We can also apply it to an entire system
• Navg = Ravg * X(0)
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Interactive system (1)

• M interactive clients
• Z = mean thinking time
• R = mean response time 

of the computer system
• X0 = throughput
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Interactive system (2)

• Mavg = mean # 
interactive clients

• Z = mean thinking time
• X0 = throughput
• Apply Little’s Law to 

the interactive part, we 
have Mavg = Z * X0
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Interactive system (3)

• Navg = average # clients 
in the computer system

• R = mean response time 
at the computer system

• X0 = throughput
• Apply Little’s Law to the 

computer system, we 
have Navg = R * X0
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Interactive system (4)

• Mavg = X0 * Z
• Navg = X0 * R
• The system is closed, the 

total number of users M is 
a constant, we have

• M = Mavg + Navg
• Therefore, 
• M = X0 * (Z+R)



S1,2016 COMP9334 38

The operational laws

• These are the operational laws
• Utilisation law U(j) = X(j) S(j)  
• Forced flow law X(j) = V(j) X(0)
• Service demand law D(j) = V(j) S(j) = U(j) / X(0)
• Little’s law N = X R 
• Interactive response time M = X(0) (R+Z)

• Applications
• Mean value analysis (later in the course)
• Bottleneck analysis
• Modification analysis
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Bottleneck analysis - motivation

D(j) Utilisation

Disk 1 79ms 0.30

Disk 2 108ms 0.41

Disk 3 142ms 0.54

CPU 92ms 0.35

Service demand law: D(j) = U(j) / X(0)
==> U(j) = D(j) X(0)
Utilisation increases with increasing 
throughput and service demand



Utilisation vs. throughput plot U(j) = D(j) X(0)

Observation:  For all system throughput: 
Utilisation of Disk 3 > Utilisation of Disk 2 > 
Utilisation of CPU   > Utilisation of Disk 1   

Disk 3

Disk 2

Disk 1

CPU

What 
determines
this order?
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Bottleneck analysis

• Recall that utilisation is the busy time of a device divided by 
measurement time
• What is the maximum value of utilisation?

• Based on the example on the previous slide, which device 
will reach the maximum utilisation first? 
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Bottleneck (1)

• Disk 3 has the highest service demand
• It is the bottleneck of the whole system

Operational law: 

Utilisation limit: 
}
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Bottleneck (2)

Should hold for all K devices in the system

Bottleneck throughput is
limited by the maximum
service demand
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Bottleneck exercise

D(j) Utilisation

Disk 1 79ms 0.30

Disk 2 108ms 0.41

Disk 3 142ms 0.54

CPU 92ms 0.35

The maximum system throughput is 1 / 0.142 = 7.04 jobs/s.
What if we upgrade Disk 3 by a new disk that is 2 times faster,
which device will be the bottleneck after the upgrade? You
can assume that service time is inversely proportional to disk
speed. 
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Another throughput bound
• Little’s law

Previously, we have

Therefore: 
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Throughput bounds

Throughput

N

Bound 1

Bound 2. Slope = 

Actual throughput
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Bottleneck analysis

• Simple to use
• Needs only utilisation of various components

• Assumes service demand is load independent
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Modification analysis (1)
• (Reference: Lazowska Section 5.3.1)
• A company currently has a system (3790) and is considering switching 

to a new system (8130). The service demands for these two systems 
are given below:

System
Service demand (seconds)
CPU Disk

3790 4.6 4.0
8130 5.1 1.9

• The company uses the system for interactive application with a think 
time of 60s. 

• Given the same workload, should the company switch to the new 
system. 

• We will work this out in the lecture, if you miss the lecture, you can 
refer to the reference for the solution.



S1,2016 COMP9334 49

Modification analysis (2)

Slope = 1/67

Slope = 1/68.6 1/4.6

1/5.1
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Operational analysis

• These are the operational laws
• Utilisation law U(j) = X(j) S 
• Forced flow law X(j) = V(j) X(0)
• Service demand law D(j) = V(j) S(j) = U(j) / X(0)
• Little’s law N = X R 
• Interactive response time M = X(0) (R+Z)

• Operational analysis allows you to bound the system 
performance but it does NOT allow you to find the 
throughput and response time of a system

• To order to find the throughput and response time, we 
need to use queueing analysis

• To order to use queueing analysis, we need to specify the 
workload 
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Workload analysis

• Performance depends on workload
• When we look at performance bound earlier, the bounds depend 

on number of users and service demand
• Queue response time depends on the job arrival rate and job 

service time
• One way of specifying workload is to use probability 

distribution.
• We will look at a well-known arrival process called Poisson 

process today. 
• We will first begin by looking at exponential distribution.



S1,2016 COMP9334 52

Exponential distribution (1)

• A continuous random variable is exponentially distributed 
with rate λ if it has probability density function

Probability that x ≤ X ≤ x + δx is

f(x) δx = λ exp(- λx) δx
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Exponential distribution - cumulative distribution

• The cumulative distribution function F(x)  = Prob(X ≤ x) is: 

What is Prob(X ≥ x)? 
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Arrival process

• Each vertical arrow in the time line below depicts the arrival 
of a customer

• An arrival can mean
• A telephone call arriving at a call centre
• A transaction arriving at a computer system
• A customer arriving at a checkout counter
• An HTTP request arriving at a web server

• The inter-arrival time distribution will impact on the response time. 
• We will study an inter-arrival distribution that results from a large number 

of independent customers.

time
t1 t2 t3 t4 t5

Inter-arrival time
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Many independent arrivals (1)
• Assume there is a large pool of N customers
• Within a time period of δ (δ is a small time period), there is a probability 

of pδ that a customer will make a request (which gives rise to an 
arrival)

• Assuming the probability that each customer makes a request is 
independent, the probability that a customer arrives in time period δ is 
Npδ

• If a customer arrives at time 0, what is the probability that the next 
customer does not arrive before time t

time
0 t

No arrival!
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Many independent arrivals (2)

• Divide the time t into intervals of width δ

time
0 t

δ

• No arrival in [0,t] means no arrival in each interval δ
• Probability of no arrival in δ = 1 - Npδ
• There are t / δ intervals
• Probability of no arrival in [0,t] is
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Exponential inter-arrival time

• We have showed that the probability that there is no arrival 
in [0,t] is exp(- N p t)

• Since we assume that there is an arrival at time 0, this 
means 

Probability(inter-arrival time > t) = exp(- N p t)

• This means 
Probability(inter-arrival time ≤ t) = 1 - exp(- N p t)

• What this shows is the inter-arrival time distribution for 
independent arrival is exponentially distributed

• Define: λ = Np
• λ is the mean arrival rate of customers 
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Poisson process (1)

• Definition: An arrival process is Poisson with parameter λ if 
the probability that n customer arrive in any time interval t
is 

Example:
Example:
λ= 5 and t = 1

Note: Poisson is a
discrete probability
distribution.
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Poisson process (2)

• Theorem: An exponential inter-arrival time distribution with 
parameter λ gives rise to a Poisson arrival process with 
parameter λ

• How can you prove this theorem?
• A possible method is to divide an interval t into small time intervals 

of width δ. A finite δ will give a binomial distribution and with δè 0, 
we get a Poisson distribution.
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Customer arriving rate 

• Given a Poisson process with parameter λ, we know that 
the probability of n customers arriving in a time interval of t 
is given by:

• What is the mean number of customers arriving in a time 
interval of t?

• That’s why λ is called the arrival rate. 
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Customer inter-arrival time

• You can also show that if the inter-arrival time distribution 
is exponential with parameter λ, then the mean inter-arrival 
time is 1/λ

• Quite nicely, we have 
Mean arrival rate = 1 / mean inter-arrival time 
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Application of Poisson process

• Poisson process has been used to model the arrival of 
telephone calls to a telephone exchange successfully

• Queueing networks with Poisson arrival is tractable
• We will see that in the next few weeks.

• Beware that not all arrival processes are Poisson! Many 
arrival processes we see in the Internet today are not 
Poisson. We will see that later. 
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References
• Operational analysis

• Lazowska et al, Quantitative System Performance, Prentice Hall, 1984. 
(Classic text on performance analysis. Now out of print but can be download 
from http://www.cs.washington.edu/homes/lazowska/qsp/
• Chapters 3 and 5 (For Chapter 5, up to Section 5.3 only)

• Alternative 1: You can read Menasce et al, “Performance by design”, Chapter 
3. Note that Menasce doesn’t cover certain aspects of performance bounds. 
So, you will also need to read Sections 5.1-5.3 of Lazowska.

• Alternative 2: You can read Harcol-Balter, Chapters 6 and 7. The treatment is 
more rigorous. You can gross over the discussion mentioning ergodicity.   

• Little’s Law (Optional)
• I presented an intuitive “proof”. A more formal proof of this well known Law is 

in Bertsekas and Gallager, “Data Networks”, Section 3.2 

• Tutorial exercises based on this week’s lecture are available from course 
web site
• We will discuss the questions in next week’s tutorial time


